| /* |
| This Software is provided under the Zope Public License (ZPL) Version 2.1. |
| |
| Copyright (c) 2009, 2010 by the mingw-w64 project |
| |
| See the AUTHORS file for the list of contributors to the mingw-w64 project. |
| |
| This license has been certified as open source. It has also been designated |
| as GPL compatible by the Free Software Foundation (FSF). |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| |
| 1. Redistributions in source code must retain the accompanying copyright |
| notice, this list of conditions, and the following disclaimer. |
| 2. Redistributions in binary form must reproduce the accompanying |
| copyright notice, this list of conditions, and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| 3. Names of the copyright holders must not be used to endorse or promote |
| products derived from this software without prior written permission |
| from the copyright holders. |
| 4. The right to distribute this software or to use it for any purpose does |
| not give you the right to use Servicemarks (sm) or Trademarks (tm) of |
| the copyright holders. Use of them is covered by separate agreement |
| with the copyright holders. |
| 5. If any files are modified, you must cause the modified files to carry |
| prominent notices stating that you changed the files and the date of |
| any change. |
| |
| Disclaimer |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY EXPRESSED |
| OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO |
| EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, |
| OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, |
| EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| __FLT_TYPE __complex__ __cdecl |
| __FLT_ABI(casinh) (__FLT_TYPE __complex__ z) |
| { |
| __complex__ __FLT_TYPE ret; |
| __complex__ __FLT_TYPE x; |
| __FLT_TYPE arz, aiz; |
| int r_class = fpclassify (__real__ z); |
| int i_class = fpclassify (__imag__ z); |
| |
| if (i_class == FP_INFINITE) |
| { |
| __real__ ret = __FLT_ABI(copysign) (__FLT_HUGE_VAL, __real__ z); |
| __imag__ ret = (r_class == FP_NAN |
| ? __FLT_NAN |
| : (__FLT_ABI(copysign) ((r_class != FP_NAN && r_class != FP_INFINITE) ? __FLT_PI_2 : __FLT_PI_4, __imag__ z))); |
| return ret; |
| } |
| |
| if (r_class == FP_INFINITE) |
| { |
| __real__ ret = __real__ z; |
| __imag__ ret = (i_class != FP_NAN |
| ? __FLT_ABI(copysign) (__FLT_CST(0.0), __imag__ z) |
| : __FLT_NAN); |
| return ret; |
| } |
| |
| if (r_class == FP_NAN) |
| { |
| __real__ ret = __real__ z; |
| __imag__ ret = (i_class == FP_ZERO |
| ? __FLT_ABI(copysign) (__FLT_CST(0.0), __imag__ z) |
| : __FLT_NAN); |
| return ret; |
| } |
| |
| if (i_class == FP_NAN) |
| { |
| __real__ ret = __FLT_NAN; |
| __imag__ ret = __FLT_NAN; |
| return ret; |
| } |
| |
| if (r_class == FP_ZERO && i_class == FP_ZERO) |
| return z; |
| |
| /* casinh(z) = log(z + sqrt(z*z + 1)) */ |
| |
| /* Use symmetries to perform the calculation in the first quadrant. */ |
| arz = __FLT_ABI(fabs) (__real__ z); |
| aiz = __FLT_ABI(fabs) (__imag__ z); |
| |
| if (arz >= __FLT_CST(1.0)/__FLT_EPSILON |
| || aiz >= __FLT_CST(1.0)/__FLT_EPSILON) |
| { |
| /* For large z, z + sqrt(z*z + 1) is approximately 2*z. |
| Use that approximation to avoid overflow when squaring. */ |
| __real__ x = arz; |
| __imag__ x = aiz; |
| ret = __FLT_ABI(clog) (x); |
| __real__ ret += M_LN2; |
| } |
| else if (aiz < __FLT_CST(1.0) && arz <= __FLT_EPSILON) |
| { |
| /* Taylor series expansion around arz=0 for z + sqrt(z*z + 1): |
| c = arz + sqrt(1-aiz^2) + i*(aiz + arz*aiz / sqrt(1-aiz^2)) + O(arz^2) |
| Identity: clog(c) = log(|c|) + i*arg(c) |
| For real part of result: |
| |c| = 1 + arz / sqrt(1-aiz^2) + O(arz^2) (Taylor series expansion) |
| For imaginary part of result: |
| c = (arz + sqrt(1-aiz^2))/sqrt(1-aiz^2) * (sqrt(1-aiz^2) + i*aiz) + O(arz^6) |
| */ |
| __FLT_TYPE s1maiz2 = __FLT_ABI(sqrt) ((__FLT_CST(1.0)+aiz)*(__FLT_CST(1.0)-aiz)); |
| __real__ ret = __FLT_ABI(log1p) (arz / s1maiz2); |
| __imag__ ret = __FLT_ABI(atan2) (aiz, s1maiz2); |
| } |
| else if (aiz < __FLT_CST(1.0) && arz*arz <= __FLT_EPSILON) |
| { |
| /* Taylor series expansion around arz=0 for z + sqrt(z*z + 1): |
| c = arz + sqrt(1-aiz^2) + arz^2 / (2*(1-aiz^2)^(3/2)) + i*(aiz + arz*aiz / sqrt(1-aiz^2)) + O(arz^4) |
| Identity: clog(c) = log(|c|) + i*arg(c) |
| For real part of result: |
| |c| = 1 + arz / sqrt(1-aiz^2) + arz^2/(2*(1-aiz^2)) + O(arz^3) (Taylor series expansion) |
| For imaginary part of result: |
| c = 1/sqrt(1-aiz^2) * ((1-aiz^2) + arz*sqrt(1-aiz^2) + arz^2/(2*(1-aiz^2)) + i*aiz*(sqrt(1-aiz^2)+arz)) + O(arz^3) |
| */ |
| __FLT_TYPE onemaiz2 = (__FLT_CST(1.0)+aiz)*(__FLT_CST(1.0)-aiz); |
| __FLT_TYPE s1maiz2 = __FLT_ABI(sqrt) (onemaiz2); |
| __FLT_TYPE arz2red = arz * arz / __FLT_CST(2.0) / s1maiz2; |
| __real__ ret = __FLT_ABI(log1p) ((arz + arz2red) / s1maiz2); |
| __imag__ ret = __FLT_ABI(atan2) (aiz * (s1maiz2 + arz), |
| onemaiz2 + arz*s1maiz2 + arz2red); |
| } |
| else |
| { |
| __real__ x = (arz - aiz) * (arz + aiz) + __FLT_CST(1.0); |
| __imag__ x = __FLT_CST(2.0) * arz * aiz; |
| |
| x = __FLT_ABI(csqrt) (x); |
| |
| __real__ x += arz; |
| __imag__ x += aiz; |
| |
| ret = __FLT_ABI(clog) (x); |
| } |
| |
| /* adjust signs for input quadrant */ |
| __real__ ret = __FLT_ABI(copysign) (__real__ ret, __real__ z); |
| __imag__ ret = __FLT_ABI(copysign) (__imag__ ret, __imag__ z); |
| |
| return ret; |
| } |