|  | /** | 
|  | * This file has no copyright assigned and is placed in the Public Domain. | 
|  | * This file is part of the w64 mingw-runtime package. | 
|  | * No warranty is given; refer to the file DISCLAIMER within this package. | 
|  | */ | 
|  | /*							erfl.c | 
|  | * | 
|  | *	Error function | 
|  | * | 
|  | * | 
|  | * | 
|  | * SYNOPSIS: | 
|  | * | 
|  | * long double x, y, erfl(); | 
|  | * | 
|  | * y = erfl( x ); | 
|  | * | 
|  | * | 
|  | * | 
|  | * DESCRIPTION: | 
|  | * | 
|  | * The integral is | 
|  | * | 
|  | *                           x | 
|  | *                            - | 
|  | *                 2         | |          2 | 
|  | *   erf(x)  =  --------     |    exp( - t  ) dt. | 
|  | *              sqrt(pi)   | | | 
|  | *                          - | 
|  | *                           0 | 
|  | * | 
|  | * The magnitude of x is limited to about 106.56 for IEEE | 
|  | * arithmetic; 1 or -1 is returned outside this range. | 
|  | * | 
|  | * For 0 <= |x| < 1, erf(x) = x * P6(x^2)/Q6(x^2); | 
|  | * Otherwise: erf(x) = 1 - erfc(x). | 
|  | * | 
|  | * | 
|  | * | 
|  | * ACCURACY: | 
|  | * | 
|  | *                      Relative error: | 
|  | * arithmetic   domain     # trials      peak         rms | 
|  | *    IEEE      0,1         50000       2.0e-19     5.7e-20 | 
|  | * | 
|  | */ | 
|  |  | 
|  | /*							erfcl.c | 
|  | * | 
|  | *	Complementary error function | 
|  | * | 
|  | * | 
|  | * | 
|  | * SYNOPSIS: | 
|  | * | 
|  | * long double x, y, erfcl(); | 
|  | * | 
|  | * y = erfcl( x ); | 
|  | * | 
|  | * | 
|  | * | 
|  | * DESCRIPTION: | 
|  | * | 
|  | * | 
|  | *  1 - erf(x) = | 
|  | * | 
|  | *                           inf. | 
|  | *                             - | 
|  | *                  2         | |          2 | 
|  | *   erfc(x)  =  --------     |    exp( - t  ) dt | 
|  | *               sqrt(pi)   | | | 
|  | *                           - | 
|  | *                            x | 
|  | * | 
|  | * | 
|  | * For small x, erfc(x) = 1 - erf(x); otherwise rational | 
|  | * approximations are computed. | 
|  | * | 
|  | * A special function expx2l.c is used to suppress error amplification | 
|  | * in computing exp(-x^2). | 
|  | * | 
|  | * | 
|  | * ACCURACY: | 
|  | * | 
|  | *                      Relative error: | 
|  | * arithmetic   domain     # trials      peak         rms | 
|  | *    IEEE      0,13        50000      8.4e-19      9.7e-20 | 
|  | *    IEEE      6,106.56    20000      2.9e-19      7.1e-20 | 
|  | * | 
|  | * | 
|  | * ERROR MESSAGES: | 
|  | * | 
|  | *   message          condition              value returned | 
|  | * erfcl underflow    x^2 > MAXLOGL              0.0 | 
|  | * | 
|  | * | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | Modified from file ndtrl.c | 
|  | Cephes Math Library Release 2.3:  January, 1995 | 
|  | Copyright 1984, 1995 by Stephen L. Moshier | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  | #include "cephes_mconf.h" | 
|  |  | 
|  | long double erfl(long double x); | 
|  |  | 
|  | /* erfc(x) = exp(-x^2) P(1/x)/Q(1/x) | 
|  | 1/8 <= 1/x <= 1 | 
|  | Peak relative error 5.8e-21  */ | 
|  |  | 
|  | static const uLD P[10] = { | 
|  | { { 0x4bf0,0x9ad8,0x7a03,0x86c7,0x401d, 0, 0, 0 } }, | 
|  | { { 0xdf23,0xd843,0x4032,0x8881,0x401e, 0, 0, 0 } }, | 
|  | { { 0xd025,0xcfd5,0x8494,0x88d3,0x401e, 0, 0, 0 } }, | 
|  | { { 0xb6d0,0xc92b,0x5417,0xacb1,0x401d, 0, 0, 0 } }, | 
|  | { { 0xada8,0x356a,0x4982,0x94a6,0x401c, 0, 0, 0 } }, | 
|  | { { 0x4e13,0xcaee,0x9e31,0xb258,0x401a, 0, 0, 0 } }, | 
|  | { { 0x5840,0x554d,0x37a3,0x9239,0x4018, 0, 0, 0 } }, | 
|  | { { 0x3b58,0x3da2,0xaf02,0x9780,0x4015, 0, 0, 0 } }, | 
|  | { { 0x0144,0x489e,0xbe68,0x9c31,0x4011, 0, 0, 0 } }, | 
|  | { { 0x333b,0xd9e6,0xd404,0x986f,0xbfee, 0, 0, 0 } } | 
|  | }; | 
|  | static const uLD Q[] = { | 
|  | { { 0x0e43,0x302d,0x79ed,0x86c7,0x401d, 0, 0, 0 } }, | 
|  | { { 0xf817,0x9128,0xc0f8,0xd48b,0x401e, 0, 0, 0 } }, | 
|  | { { 0x8eae,0x8dad,0x6eb4,0x9aa2,0x401f, 0, 0, 0 } }, | 
|  | { { 0x00e7,0x7595,0xcd06,0x88bb,0x401f, 0, 0, 0 } }, | 
|  | { { 0x4991,0xcfda,0x52f1,0xa2a9,0x401e, 0, 0, 0 } }, | 
|  | { { 0xc39d,0xe415,0xc43d,0x87c0,0x401d, 0, 0, 0 } }, | 
|  | { { 0xa75d,0x436f,0x30dd,0xa027,0x401b, 0, 0, 0 } }, | 
|  | { { 0xc4cb,0x305a,0xbf78,0x8220,0x4019, 0, 0, 0 } }, | 
|  | { { 0x3708,0x33b1,0x07fa,0x8644,0x4016, 0, 0, 0 } }, | 
|  | { { 0x24fa,0x96f6,0x7153,0x8a6c,0x4012, 0, 0, 0 } } | 
|  | }; | 
|  |  | 
|  | /* erfc(x) = exp(-x^2) 1/x R(1/x^2) / S(1/x^2) | 
|  | 1/128 <= 1/x < 1/8 | 
|  | Peak relative error 1.9e-21  */ | 
|  |  | 
|  | static const uLD R[] = { | 
|  | { { 0x260a,0xab95,0x2fc7,0xe7c4,0x4000, 0, 0, 0 } }, | 
|  | { { 0x4761,0x613e,0xdf6d,0xe58e,0x4001, 0, 0, 0 } }, | 
|  | { { 0x0615,0x4b00,0x575f,0xdc7b,0x4000, 0, 0, 0 } }, | 
|  | { { 0x521d,0x8527,0x3435,0x8dc2,0x3ffe, 0, 0, 0 } }, | 
|  | { { 0x22cf,0xc711,0x6c5b,0xdcfb,0x3ff9, 0, 0, 0 } } | 
|  | }; | 
|  | static const uLD S[] = { | 
|  | { { 0x5de6,0x17d7,0x54d6,0xaba9,0x4002, 0, 0, 0 } }, | 
|  | { { 0x55d5,0xd300,0xe71e,0xf564,0x4002, 0, 0, 0 } }, | 
|  | { { 0xb611,0x8f76,0xf020,0xd255,0x4001, 0, 0, 0 } }, | 
|  | { { 0x3684,0x3798,0xb793,0x80b0,0x3fff, 0, 0, 0 } }, | 
|  | { { 0xf5af,0x2fb2,0x1e57,0xc3d7,0x3ffa, 0, 0, 0 } } | 
|  | }; | 
|  |  | 
|  | /* erf(x)  = x T(x^2)/U(x^2) | 
|  | 0 <= x <= 1 | 
|  | Peak relative error 7.6e-23  */ | 
|  |  | 
|  | static const uLD T[] = { | 
|  | { { 0xfd7a,0x3a1a,0x705b,0xe0c4,0x3ffb, 0, 0, 0 } }, | 
|  | { { 0x3128,0xc337,0x3716,0xace5,0x4001, 0, 0, 0 } }, | 
|  | { { 0x9517,0x4e93,0x540e,0x8f97,0x4007, 0, 0, 0 } }, | 
|  | { { 0x6118,0x6059,0x9093,0xa757,0x400a, 0, 0, 0 } }, | 
|  | { { 0xb954,0xa987,0xc60c,0xbc83,0x400e, 0, 0, 0 } }, | 
|  | { { 0x7a56,0xe45a,0xa4bd,0x975b,0x4010, 0, 0, 0 } }, | 
|  | { { 0xc446,0x6bab,0x0b2a,0x86d0,0x4013, 0, 0, 0 } } | 
|  | }; | 
|  |  | 
|  | static const uLD U[] = { | 
|  | { { 0x3453,0x1f8e,0xf688,0xb507,0x4004, 0, 0, 0 } }, | 
|  | { { 0x71ac,0xb12f,0x21ca,0xf2e2,0x4008, 0, 0, 0 } }, | 
|  | { { 0xffe8,0x9cac,0x3b84,0xc2ac,0x400c, 0, 0, 0 } }, | 
|  | { { 0x481d,0x445b,0xc807,0xc232,0x400f, 0, 0, 0 } }, | 
|  | { { 0x9ad5,0x1aef,0x45b1,0xe25e,0x4011, 0, 0, 0 } }, | 
|  | { { 0x71a7,0x1cad,0x012e,0xeef3,0x4012, 0, 0, 0 } } | 
|  | }; | 
|  |  | 
|  | /*							expx2l.c | 
|  | * | 
|  | *	Exponential of squared argument | 
|  | * | 
|  | * | 
|  | * | 
|  | * SYNOPSIS: | 
|  | * | 
|  | * long double x, y, expmx2l(); | 
|  | * int sign; | 
|  | * | 
|  | * y = expx2l( x ); | 
|  | * | 
|  | * | 
|  | * | 
|  | * DESCRIPTION: | 
|  | * | 
|  | * Computes y = exp(x*x) while suppressing error amplification | 
|  | * that would ordinarily arise from the inexactness of the | 
|  | * exponential argument x*x. | 
|  | * | 
|  | * | 
|  | * | 
|  | * ACCURACY: | 
|  | * | 
|  | *                      Relative error: | 
|  | * arithmetic      domain        # trials      peak         rms | 
|  | *   IEEE     -106.566, 106.566    10^5       1.6e-19     4.4e-20 | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define M 32768.0L | 
|  | #define MINV 3.0517578125e-5L | 
|  |  | 
|  | static long double expx2l (long double x) | 
|  | { | 
|  | long double u, u1, m, f; | 
|  |  | 
|  | x = fabsl (x); | 
|  | /* Represent x as an exact multiple of M plus a residual. | 
|  | M is a power of 2 chosen so that exp(m * m) does not overflow | 
|  | or underflow and so that |x - m| is small.  */ | 
|  | m = MINV * floorl(M * x + 0.5L); | 
|  | f = x - m; | 
|  |  | 
|  | /* x^2 = m^2 + 2mf + f^2 */ | 
|  | u = m * m; | 
|  | u1 = 2 * m * f  +  f * f; | 
|  |  | 
|  | if ((u + u1) > MAXLOGL) | 
|  | return (INFINITYL); | 
|  |  | 
|  | /* u is exact, u1 is small.  */ | 
|  | u = expl(u) * expl(u1); | 
|  | return (u); | 
|  | } | 
|  |  | 
|  | long double erfcl(long double a) | 
|  | { | 
|  | long double p, q, x, y, z; | 
|  |  | 
|  | if (isinf (a)) | 
|  | return (signbit(a) ? 2.0 : 0.0); | 
|  |  | 
|  | x = fabsl (a); | 
|  |  | 
|  | if (x < 1.0L) | 
|  | return (1.0L - erfl(a)); | 
|  |  | 
|  | z = a * a; | 
|  |  | 
|  | if (z  > MAXLOGL) | 
|  | { | 
|  | under: | 
|  | mtherr("erfcl", UNDERFLOW); | 
|  | errno = ERANGE; | 
|  | return (signbit(a) ? 2.0 : 0.0); | 
|  | } | 
|  |  | 
|  | /* Compute z = expl(a * a).  */ | 
|  | z = expx2l(a); | 
|  | y = 1.0L/x; | 
|  |  | 
|  | if (x < 8.0L) | 
|  | { | 
|  | p = polevll(y, P, 9); | 
|  | q = p1evll(y, Q, 10); | 
|  | } | 
|  | else | 
|  | { | 
|  | q = y * y; | 
|  | p = y * polevll(q, R, 4); | 
|  | q = p1evll(q, S, 5); | 
|  | } | 
|  | y = p/(q * z); | 
|  |  | 
|  | if (a < 0.0L) | 
|  | y = 2.0L - y; | 
|  |  | 
|  | if (y == 0.0L) | 
|  | goto under; | 
|  |  | 
|  | return (y); | 
|  | } | 
|  |  | 
|  | long double erfl(long double x) | 
|  | { | 
|  | long double y, z; | 
|  |  | 
|  | if (x == 0.0L) | 
|  | return (x); | 
|  |  | 
|  | if (isinf (x)) | 
|  | return (signbit(x) ?  -1.0L : 1.0L); | 
|  |  | 
|  | if (fabsl(x) > 1.0L) | 
|  | return (1.0L - erfcl(x)); | 
|  |  | 
|  | z = x * x; | 
|  | y = x * polevll(z, T, 6) / p1evll(z, U, 6); | 
|  | return (y); | 
|  | } |