|  | /** | 
|  | * This file has no copyright assigned and is placed in the Public Domain. | 
|  | * This file is part of the mingw-w64 runtime package. | 
|  | * No warranty is given; refer to the file DISCLAIMER.PD within this package. | 
|  | */ | 
|  | #include "cephes_mconf.h" | 
|  |  | 
|  | static const long double CBRT2  = 1.2599210498948731647672L; | 
|  | static const long double CBRT4  = 1.5874010519681994747517L; | 
|  | static const long double CBRT2I = 0.79370052598409973737585L; | 
|  | static const long double CBRT4I = 0.62996052494743658238361L; | 
|  |  | 
|  | extern long double ldexpl(long double,int); | 
|  |  | 
|  | long double cbrtl(long double x) | 
|  | { | 
|  | int e, rem, sign; | 
|  | long double z; | 
|  |  | 
|  | if (!isfinite (x) || x == 0.0L) | 
|  | return (x); | 
|  |  | 
|  | if (x > 0) | 
|  | sign = 1; | 
|  | else | 
|  | { | 
|  | sign = -1; | 
|  | x = -x; | 
|  | } | 
|  |  | 
|  | z = x; | 
|  | /* extract power of 2, leaving | 
|  | * mantissa between 0.5 and 1 | 
|  | */ | 
|  | x = frexpl(x, &e); | 
|  |  | 
|  | /* Approximate cube root of number between .5 and 1, | 
|  | * peak relative error = 1.2e-6 | 
|  | */ | 
|  | x = (((( 1.3584464340920900529734e-1L * x | 
|  | - 6.3986917220457538402318e-1L) * x | 
|  | + 1.2875551670318751538055e0L) * x | 
|  | - 1.4897083391357284957891e0L) * x | 
|  | + 1.3304961236013647092521e0L) * x | 
|  | + 3.7568280825958912391243e-1L; | 
|  |  | 
|  | /* exponent divided by 3 */ | 
|  | if (e >= 0) | 
|  | { | 
|  | rem = e; | 
|  | e /= 3; | 
|  | rem -= 3*e; | 
|  | if (rem == 1) | 
|  | x *= CBRT2; | 
|  | else if (rem == 2) | 
|  | x *= CBRT4; | 
|  | } | 
|  | else | 
|  | { /* argument less than 1 */ | 
|  | e = -e; | 
|  | rem = e; | 
|  | e /= 3; | 
|  | rem -= 3*e; | 
|  | if (rem == 1) | 
|  | x *= CBRT2I; | 
|  | else if (rem == 2) | 
|  | x *= CBRT4I; | 
|  | e = -e; | 
|  | } | 
|  |  | 
|  | /* multiply by power of 2 */ | 
|  | x = ldexpl(x, e); | 
|  |  | 
|  | /* Newton iteration */ | 
|  |  | 
|  | x -= ( x - (z/(x*x)) )*0.3333333333333333333333L; | 
|  | x -= ( x - (z/(x*x)) )*0.3333333333333333333333L; | 
|  |  | 
|  | if (sign < 0) | 
|  | x = -x; | 
|  | return (x); | 
|  | } |