| /** | |
| * This file has no copyright assigned and is placed in the Public Domain. | |
| * This file is part of the w64 mingw-runtime package. | |
| * No warranty is given; refer to the file DISCLAIMER within this package. | |
| */ | |
| #include "cephes_emath.h" | |
| /* | |
| * The constants are for 64 bit precision. | |
| */ | |
| /* Move in external format number, | |
| * converting it to internal format. | |
| */ | |
| void __emovi(const short unsigned int * __restrict__ a, | |
| short unsigned int * __restrict__ b) | |
| { | |
| register const unsigned short *p; | |
| register unsigned short *q; | |
| int i; | |
| q = b; | |
| p = a + (NE-1); /* point to last word of external number */ | |
| /* get the sign bit */ | |
| if( *p & 0x8000 ) | |
| *q++ = 0xffff; | |
| else | |
| *q++ = 0; | |
| /* get the exponent */ | |
| *q = *p--; | |
| *q++ &= 0x7fff; /* delete the sign bit */ | |
| #ifdef INFINITY | |
| if( (*(q-1) & 0x7fff) == 0x7fff ) | |
| { | |
| #ifdef NANS | |
| if( __eisnan(a) ) | |
| { | |
| *q++ = 0; | |
| for( i=3; i<NI; i++ ) | |
| *q++ = *p--; | |
| return; | |
| } | |
| #endif | |
| for( i=2; i<NI; i++ ) | |
| *q++ = 0; | |
| return; | |
| } | |
| #endif | |
| /* clear high guard word */ | |
| *q++ = 0; | |
| /* move in the significand */ | |
| for( i=0; i<NE-1; i++ ) | |
| *q++ = *p--; | |
| /* clear low guard word */ | |
| *q = 0; | |
| } | |
| /* | |
| ; Add significands | |
| ; x + y replaces y | |
| */ | |
| void __eaddm(const short unsigned int * __restrict__ x, | |
| short unsigned int * __restrict__ y) | |
| { | |
| register unsigned long a; | |
| int i; | |
| unsigned int carry; | |
| x += NI-1; | |
| y += NI-1; | |
| carry = 0; | |
| for( i=M; i<NI; i++ ) | |
| { | |
| a = (unsigned long )(*x) + (unsigned long )(*y) + carry; | |
| if( a & 0x10000 ) | |
| carry = 1; | |
| else | |
| carry = 0; | |
| *y = (unsigned short )a; | |
| --x; | |
| --y; | |
| } | |
| } | |
| /* | |
| ; Subtract significands | |
| ; y - x replaces y | |
| */ | |
| void __esubm(const short unsigned int * __restrict__ x, | |
| short unsigned int * __restrict__ y) | |
| { | |
| unsigned long a; | |
| int i; | |
| unsigned int carry; | |
| x += NI-1; | |
| y += NI-1; | |
| carry = 0; | |
| for( i=M; i<NI; i++ ) | |
| { | |
| a = (unsigned long )(*y) - (unsigned long )(*x) - carry; | |
| if( a & 0x10000 ) | |
| carry = 1; | |
| else | |
| carry = 0; | |
| *y = (unsigned short )a; | |
| --x; | |
| --y; | |
| } | |
| } | |
| /* Multiply significand of e-type number b | |
| by 16-bit quantity a, e-type result to c. */ | |
| static void __m16m(short unsigned int a, | |
| short unsigned int * __restrict__ b, | |
| short unsigned int * __restrict__ c) | |
| { | |
| register unsigned short *pp; | |
| register unsigned long carry; | |
| unsigned short *ps; | |
| unsigned short p[NI]; | |
| unsigned long aa, m; | |
| int i; | |
| aa = a; | |
| pp = &p[NI-2]; | |
| *pp++ = 0; | |
| *pp = 0; | |
| ps = &b[NI-1]; | |
| for( i=M+1; i<NI; i++ ) | |
| { | |
| if( *ps == 0 ) | |
| { | |
| --ps; | |
| --pp; | |
| *(pp-1) = 0; | |
| } | |
| else | |
| { | |
| m = (unsigned long) aa * *ps--; | |
| carry = (m & 0xffff) + *pp; | |
| *pp-- = (unsigned short )carry; | |
| carry = (carry >> 16) + (m >> 16) + *pp; | |
| *pp = (unsigned short )carry; | |
| *(pp-1) = carry >> 16; | |
| } | |
| } | |
| for( i=M; i<NI; i++ ) | |
| c[i] = p[i]; | |
| } | |
| /* Divide significands. Neither the numerator nor the denominator | |
| is permitted to have its high guard word nonzero. */ | |
| int __edivm(short unsigned int * __restrict__ den, | |
| short unsigned int * __restrict__ num) | |
| { | |
| int i; | |
| register unsigned short *p; | |
| unsigned long tnum; | |
| unsigned short j, tdenm, tquot; | |
| unsigned short tprod[NI+1]; | |
| unsigned short equot[NI]; | |
| p = &equot[0]; | |
| *p++ = num[0]; | |
| *p++ = num[1]; | |
| for( i=M; i<NI; i++ ) | |
| { | |
| *p++ = 0; | |
| } | |
| __eshdn1( num ); | |
| tdenm = den[M+1]; | |
| for( i=M; i<NI; i++ ) | |
| { | |
| /* Find trial quotient digit (the radix is 65536). */ | |
| tnum = (((unsigned long) num[M]) << 16) + num[M+1]; | |
| /* Do not execute the divide instruction if it will overflow. */ | |
| if( (tdenm * 0xffffUL) < tnum ) | |
| tquot = 0xffff; | |
| else | |
| tquot = tnum / tdenm; | |
| /* Prove that the divide worked. */ | |
| /* | |
| tcheck = (unsigned long )tquot * tdenm; | |
| if( tnum - tcheck > tdenm ) | |
| tquot = 0xffff; | |
| */ | |
| /* Multiply denominator by trial quotient digit. */ | |
| __m16m( tquot, den, tprod ); | |
| /* The quotient digit may have been overestimated. */ | |
| if( __ecmpm( tprod, num ) > 0 ) | |
| { | |
| tquot -= 1; | |
| __esubm( den, tprod ); | |
| if( __ecmpm( tprod, num ) > 0 ) | |
| { | |
| tquot -= 1; | |
| __esubm( den, tprod ); | |
| } | |
| } | |
| __esubm( tprod, num ); | |
| equot[i] = tquot; | |
| __eshup6(num); | |
| } | |
| /* test for nonzero remainder after roundoff bit */ | |
| p = &num[M]; | |
| j = 0; | |
| for( i=M; i<NI; i++ ) | |
| { | |
| j |= *p++; | |
| } | |
| if( j ) | |
| j = 1; | |
| for( i=0; i<NI; i++ ) | |
| num[i] = equot[i]; | |
| return( (int )j ); | |
| } | |
| /* Multiply significands */ | |
| int __emulm(const short unsigned int * __restrict__ a, | |
| short unsigned int * __restrict__ b) | |
| { | |
| const unsigned short *p; | |
| unsigned short *q; | |
| unsigned short pprod[NI]; | |
| unsigned short equot[NI]; | |
| unsigned short j; | |
| int i; | |
| equot[0] = b[0]; | |
| equot[1] = b[1]; | |
| for( i=M; i<NI; i++ ) | |
| equot[i] = 0; | |
| j = 0; | |
| p = &a[NI-1]; | |
| q = &equot[NI-1]; | |
| for( i=M+1; i<NI; i++ ) | |
| { | |
| if( *p == 0 ) | |
| { | |
| --p; | |
| } | |
| else | |
| { | |
| __m16m( *p--, b, pprod ); | |
| __eaddm(pprod, equot); | |
| } | |
| j |= *q; | |
| __eshdn6(equot); | |
| } | |
| for( i=0; i<NI; i++ ) | |
| b[i] = equot[i]; | |
| /* return flag for lost nonzero bits */ | |
| return( (int)j ); | |
| } | |
| /* | |
| * Normalize and round off. | |
| * | |
| * The internal format number to be rounded is "s". | |
| * Input "lost" indicates whether the number is exact. | |
| * This is the so-called sticky bit. | |
| * | |
| * Input "subflg" indicates whether the number was obtained | |
| * by a subtraction operation. In that case if lost is nonzero | |
| * then the number is slightly smaller than indicated. | |
| * | |
| * Input "exp" is the biased exponent, which may be negative. | |
| * the exponent field of "s" is ignored but is replaced by | |
| * "exp" as adjusted by normalization and rounding. | |
| * | |
| * Input "rcntrl" is the rounding control. | |
| * | |
| * Input "rnprc" is precison control (64 or NBITS). | |
| */ | |
| void __emdnorm(short unsigned int *s, int lost, int subflg, int exp, int rcntrl, int rndprc) | |
| { | |
| int i, j; | |
| unsigned short r; | |
| int rw = NI-1; /* low guard word */ | |
| int re = NI-2; | |
| const unsigned short rmsk = 0xffff; | |
| const unsigned short rmbit = 0x8000; | |
| #if NE == 6 | |
| unsigned short rbit[NI] = {0,0,0,0,0,0,0,1,0}; | |
| #else | |
| unsigned short rbit[NI] = {0,0,0,0,0,0,0,0,0,0,0,1,0}; | |
| #endif | |
| /* Normalize */ | |
| j = __enormlz( s ); | |
| /* a blank significand could mean either zero or infinity. */ | |
| #ifndef INFINITY | |
| if( j > NBITS ) | |
| { | |
| __ecleazs( s ); | |
| return; | |
| } | |
| #endif | |
| exp -= j; | |
| #ifndef INFINITY | |
| if( exp >= 32767L ) | |
| goto overf; | |
| #else | |
| if( (j > NBITS) && (exp < 32767L) ) | |
| { | |
| __ecleazs( s ); | |
| return; | |
| } | |
| #endif | |
| if( exp < 0L ) | |
| { | |
| if( exp > (long )(-NBITS-1) ) | |
| { | |
| j = (int )exp; | |
| i = __eshift( s, j ); | |
| if( i ) | |
| lost = 1; | |
| } | |
| else | |
| { | |
| __ecleazs( s ); | |
| return; | |
| } | |
| } | |
| /* Round off, unless told not to by rcntrl. */ | |
| if( rcntrl == 0 ) | |
| goto mdfin; | |
| if (rndprc == 64) | |
| { | |
| rw = 7; | |
| re = 6; | |
| rbit[NI-2] = 0; | |
| rbit[6] = 1; | |
| } | |
| /* Shift down 1 temporarily if the data structure has an implied | |
| * most significant bit and the number is denormal. | |
| * For rndprc = 64 or NBITS, there is no implied bit. | |
| * But Intel long double denormals lose one bit of significance even so. | |
| */ | |
| #if IBMPC | |
| if( (exp <= 0) && (rndprc != NBITS) ) | |
| #else | |
| if( (exp <= 0) && (rndprc != 64) && (rndprc != NBITS) ) | |
| #endif | |
| { | |
| lost |= s[NI-1] & 1; | |
| __eshdn1(s); | |
| } | |
| /* Clear out all bits below the rounding bit, | |
| * remembering in r if any were nonzero. | |
| */ | |
| r = s[rw] & rmsk; | |
| if( rndprc < NBITS ) | |
| { | |
| i = rw + 1; | |
| while( i < NI ) | |
| { | |
| if( s[i] ) | |
| r |= 1; | |
| s[i] = 0; | |
| ++i; | |
| } | |
| } | |
| s[rw] &= ~rmsk; | |
| if( (r & rmbit) != 0 ) | |
| { | |
| if( r == rmbit ) | |
| { | |
| if( lost == 0 ) | |
| { /* round to even */ | |
| if( (s[re] & 1) == 0 ) | |
| goto mddone; | |
| } | |
| else | |
| { | |
| if( subflg != 0 ) | |
| goto mddone; | |
| } | |
| } | |
| __eaddm( rbit, s ); | |
| } | |
| mddone: | |
| #if IBMPC | |
| if( (exp <= 0) && (rndprc != NBITS) ) | |
| #else | |
| if( (exp <= 0) && (rndprc != 64) && (rndprc != NBITS) ) | |
| #endif | |
| { | |
| __eshup1(s); | |
| } | |
| if( s[2] != 0 ) | |
| { /* overflow on roundoff */ | |
| __eshdn1(s); | |
| exp += 1; | |
| } | |
| mdfin: | |
| s[NI-1] = 0; | |
| if( exp >= 32767L ) | |
| { | |
| #ifndef INFINITY | |
| overf: | |
| #endif | |
| #ifdef INFINITY | |
| s[1] = 32767; | |
| for( i=2; i<NI-1; i++ ) | |
| s[i] = 0; | |
| #else | |
| s[1] = 32766; | |
| s[2] = 0; | |
| for( i=M+1; i<NI-1; i++ ) | |
| s[i] = 0xffff; | |
| s[NI-1] = 0; | |
| if( (rndprc < 64) || (rndprc == 113) ) | |
| s[rw] &= ~rmsk; | |
| #endif | |
| return; | |
| } | |
| if( exp < 0 ) | |
| s[1] = 0; | |
| else | |
| s[1] = (unsigned short )exp; | |
| } | |
| /* | |
| ; Multiply. | |
| ; | |
| ; unsigned short a[NE], b[NE], c[NE]; | |
| ; emul( a, b, c ); c = b * a | |
| */ | |
| void __emul(const short unsigned int *a, | |
| const short unsigned int *b, | |
| short unsigned int *c) | |
| { | |
| unsigned short ai[NI], bi[NI]; | |
| int i, j; | |
| long lt, lta, ltb; | |
| #ifdef NANS | |
| /* NaN times anything is the same NaN. */ | |
| if( __eisnan(a) ) | |
| { | |
| __emov(a,c); | |
| return; | |
| } | |
| if( __eisnan(b) ) | |
| { | |
| __emov(b,c); | |
| return; | |
| } | |
| /* Zero times infinity is a NaN. */ | |
| if( (__eisinf(a) && __eiiszero(b)) | |
| || (__eisinf(b) && __eiiszero(a)) ) | |
| { | |
| mtherr( "emul", DOMAIN ); | |
| __enan_NBITS( c ); | |
| return; | |
| } | |
| #endif | |
| /* Infinity times anything else is infinity. */ | |
| #ifdef INFINITY | |
| if( __eisinf(a) || __eisinf(b) ) | |
| { | |
| if( __eisneg(a) ^ __eisneg(b) ) | |
| *(c+(NE-1)) = 0x8000; | |
| else | |
| *(c+(NE-1)) = 0; | |
| __einfin(c); | |
| return; | |
| } | |
| #endif | |
| __emovi( a, ai ); | |
| __emovi( b, bi ); | |
| lta = ai[E]; | |
| ltb = bi[E]; | |
| if( ai[E] == 0 ) | |
| { | |
| for( i=1; i<NI-1; i++ ) | |
| { | |
| if( ai[i] != 0 ) | |
| { | |
| lta -= __enormlz( ai ); | |
| goto mnzer1; | |
| } | |
| } | |
| __eclear(c); | |
| return; | |
| } | |
| mnzer1: | |
| if( bi[E] == 0 ) | |
| { | |
| for( i=1; i<NI-1; i++ ) | |
| { | |
| if( bi[i] != 0 ) | |
| { | |
| ltb -= __enormlz( bi ); | |
| goto mnzer2; | |
| } | |
| } | |
| __eclear(c); | |
| return; | |
| } | |
| mnzer2: | |
| /* Multiply significands */ | |
| j = __emulm( ai, bi ); | |
| /* calculate exponent */ | |
| lt = lta + ltb - (EXONE - 1); | |
| __emdnorm( bi, j, 0, lt, 64, NBITS ); | |
| /* calculate sign of product */ | |
| if( ai[0] == bi[0] ) | |
| bi[0] = 0; | |
| else | |
| bi[0] = 0xffff; | |
| __emovo( bi, c ); | |
| } | |
| /* move out internal format to ieee long double */ | |
| void __toe64(short unsigned int *a, short unsigned int *b) | |
| { | |
| register unsigned short *p, *q; | |
| unsigned short i; | |
| #ifdef NANS | |
| if( __eiisnan(a) ) | |
| { | |
| __enan_64( b ); | |
| return; | |
| } | |
| #endif | |
| #ifdef IBMPC | |
| /* Shift Intel denormal significand down 1. */ | |
| if( a[E] == 0 ) | |
| __eshdn1(a); | |
| #endif | |
| p = a; | |
| #ifdef MIEEE | |
| q = b; | |
| #else | |
| q = b + 4; /* point to output exponent */ | |
| #if 1 | |
| /* NOTE: if data type is 96 bits wide, clear the last word here. */ | |
| *(q+1)= 0; | |
| #endif | |
| #endif | |
| /* combine sign and exponent */ | |
| i = *p++; | |
| #ifdef MIEEE | |
| if( i ) | |
| *q++ = *p++ | 0x8000; | |
| else | |
| *q++ = *p++; | |
| *q++ = 0; | |
| #else | |
| if( i ) | |
| *q-- = *p++ | 0x8000; | |
| else | |
| *q-- = *p++; | |
| #endif | |
| /* skip over guard word */ | |
| ++p; | |
| /* move the significand */ | |
| #ifdef MIEEE | |
| for( i=0; i<4; i++ ) | |
| *q++ = *p++; | |
| #else | |
| #ifdef INFINITY | |
| if (__eiisinf (a)) | |
| { | |
| /* Intel long double infinity. */ | |
| *q-- = 0x8000; | |
| *q-- = 0; | |
| *q-- = 0; | |
| *q = 0; | |
| return; | |
| } | |
| #endif | |
| for( i=0; i<4; i++ ) | |
| *q-- = *p++; | |
| #endif | |
| } | |
| /* Compare two e type numbers. | |
| * | |
| * unsigned short a[NE], b[NE]; | |
| * ecmp( a, b ); | |
| * | |
| * returns +1 if a > b | |
| * 0 if a == b | |
| * -1 if a < b | |
| * -2 if either a or b is a NaN. | |
| */ | |
| int __ecmp(const short unsigned int * __restrict__ a, | |
| const short unsigned int * __restrict__ b) | |
| { | |
| unsigned short ai[NI], bi[NI]; | |
| register unsigned short *p, *q; | |
| register int i; | |
| int msign; | |
| #ifdef NANS | |
| if (__eisnan (a) || __eisnan (b)) | |
| return( -2 ); | |
| #endif | |
| __emovi( a, ai ); | |
| p = ai; | |
| __emovi( b, bi ); | |
| q = bi; | |
| if( *p != *q ) | |
| { /* the signs are different */ | |
| /* -0 equals + 0 */ | |
| for( i=1; i<NI-1; i++ ) | |
| { | |
| if( ai[i] != 0 ) | |
| goto nzro; | |
| if( bi[i] != 0 ) | |
| goto nzro; | |
| } | |
| return(0); | |
| nzro: | |
| if( *p == 0 ) | |
| return( 1 ); | |
| else | |
| return( -1 ); | |
| } | |
| /* both are the same sign */ | |
| if( *p == 0 ) | |
| msign = 1; | |
| else | |
| msign = -1; | |
| i = NI-1; | |
| do | |
| { | |
| if( *p++ != *q++ ) | |
| { | |
| goto diff; | |
| } | |
| } | |
| while( --i > 0 ); | |
| return(0); /* equality */ | |
| diff: | |
| if( *(--p) > *(--q) ) | |
| return( msign ); /* p is bigger */ | |
| else | |
| return( -msign ); /* p is littler */ | |
| } | |
| /* | |
| ; Shift significand | |
| ; | |
| ; Shifts significand area up or down by the number of bits | |
| ; given by the variable sc. | |
| */ | |
| int __eshift(short unsigned int *x, int sc) | |
| { | |
| unsigned short lost; | |
| unsigned short *p; | |
| if( sc == 0 ) | |
| return( 0 ); | |
| lost = 0; | |
| p = x + NI-1; | |
| if( sc < 0 ) | |
| { | |
| sc = -sc; | |
| while( sc >= 16 ) | |
| { | |
| lost |= *p; /* remember lost bits */ | |
| __eshdn6(x); | |
| sc -= 16; | |
| } | |
| while( sc >= 8 ) | |
| { | |
| lost |= *p & 0xff; | |
| __eshdn8(x); | |
| sc -= 8; | |
| } | |
| while( sc > 0 ) | |
| { | |
| lost |= *p & 1; | |
| __eshdn1(x); | |
| sc -= 1; | |
| } | |
| } | |
| else | |
| { | |
| while( sc >= 16 ) | |
| { | |
| __eshup6(x); | |
| sc -= 16; | |
| } | |
| while( sc >= 8 ) | |
| { | |
| __eshup8(x); | |
| sc -= 8; | |
| } | |
| while( sc > 0 ) | |
| { | |
| __eshup1(x); | |
| sc -= 1; | |
| } | |
| } | |
| if( lost ) | |
| lost = 1; | |
| return( (int )lost ); | |
| } | |
| /* | |
| ; normalize | |
| ; | |
| ; Shift normalizes the significand area pointed to by argument | |
| ; shift count (up = positive) is returned. | |
| */ | |
| int __enormlz(short unsigned int *x) | |
| { | |
| register unsigned short *p; | |
| int sc; | |
| sc = 0; | |
| p = &x[M]; | |
| if( *p != 0 ) | |
| goto normdn; | |
| ++p; | |
| if( *p & 0x8000 ) | |
| return( 0 ); /* already normalized */ | |
| while( *p == 0 ) | |
| { | |
| __eshup6(x); | |
| sc += 16; | |
| /* With guard word, there are NBITS+16 bits available. | |
| * return true if all are zero. | |
| */ | |
| if( sc > NBITS ) | |
| return( sc ); | |
| } | |
| /* see if high byte is zero */ | |
| while( (*p & 0xff00) == 0 ) | |
| { | |
| __eshup8(x); | |
| sc += 8; | |
| } | |
| /* now shift 1 bit at a time */ | |
| while( (*p & 0x8000) == 0) | |
| { | |
| __eshup1(x); | |
| sc += 1; | |
| if( sc > (NBITS+16) ) | |
| { | |
| mtherr( "enormlz", UNDERFLOW ); | |
| return( sc ); | |
| } | |
| } | |
| return( sc ); | |
| /* Normalize by shifting down out of the high guard word | |
| of the significand */ | |
| normdn: | |
| if( *p & 0xff00 ) | |
| { | |
| __eshdn8(x); | |
| sc -= 8; | |
| } | |
| while( *p != 0 ) | |
| { | |
| __eshdn1(x); | |
| sc -= 1; | |
| if( sc < -NBITS ) | |
| { | |
| mtherr( "enormlz", OVERFLOW ); | |
| return( sc ); | |
| } | |
| } | |
| return( sc ); | |
| } | |
| /* Move internal format number out, | |
| * converting it to external format. | |
| */ | |
| void __emovo(const short unsigned int * __restrict__ a, | |
| short unsigned int * __restrict__ b) | |
| { | |
| register const unsigned short *p; | |
| register unsigned short *q; | |
| unsigned short i; | |
| p = a; | |
| q = b + (NE-1); /* point to output exponent */ | |
| /* combine sign and exponent */ | |
| i = *p++; | |
| if( i ) | |
| *q-- = *p++ | 0x8000; | |
| else | |
| *q-- = *p++; | |
| #ifdef INFINITY | |
| if( *(p-1) == 0x7fff ) | |
| { | |
| #ifdef NANS | |
| if( __eiisnan(a) ) | |
| { | |
| __enan_NBITS( b ); | |
| return; | |
| } | |
| #endif | |
| __einfin(b); | |
| return; | |
| } | |
| #endif | |
| /* skip over guard word */ | |
| ++p; | |
| /* move the significand */ | |
| for( i=0; i<NE-1; i++ ) | |
| *q-- = *p++; | |
| } | |
| #if USE_LDTOA | |
| void __eiremain(short unsigned int *den, short unsigned int *num, | |
| short unsigned int *equot ) | |
| { | |
| long ld, ln; | |
| unsigned short j; | |
| ld = den[E]; | |
| ld -= __enormlz( den ); | |
| ln = num[E]; | |
| ln -= __enormlz( num ); | |
| __ecleaz( equot ); | |
| while( ln >= ld ) | |
| { | |
| if( __ecmpm(den,num) <= 0 ) | |
| { | |
| __esubm(den, num); | |
| j = 1; | |
| } | |
| else | |
| { | |
| j = 0; | |
| } | |
| __eshup1(equot); | |
| equot[NI-1] |= j; | |
| __eshup1(num); | |
| ln -= 1; | |
| } | |
| __emdnorm( num, 0, 0, ln, 0, NBITS ); | |
| } | |
| void __eadd1(const short unsigned int * __restrict__ a, | |
| const short unsigned int * __restrict__ b, | |
| short unsigned int * __restrict__ c, | |
| int subflg) | |
| { | |
| unsigned short ai[NI], bi[NI], ci[NI]; | |
| int i, lost, j, k; | |
| long lt, lta, ltb; | |
| #ifdef INFINITY | |
| if( __eisinf(a) ) | |
| { | |
| __emov(a,c); | |
| if( subflg ) | |
| __eneg(c); | |
| return; | |
| } | |
| if( __eisinf(b) ) | |
| { | |
| __emov(b,c); | |
| return; | |
| } | |
| #endif | |
| __emovi( a, ai ); | |
| __emovi( b, bi ); | |
| if( sub ) | |
| ai[0] = ~ai[0]; | |
| /* compare exponents */ | |
| lta = ai[E]; | |
| ltb = bi[E]; | |
| lt = lta - ltb; | |
| if( lt > 0L ) | |
| { /* put the larger number in bi */ | |
| __emovz( bi, ci ); | |
| __emovz( ai, bi ); | |
| __emovz( ci, ai ); | |
| ltb = bi[E]; | |
| lt = -lt; | |
| } | |
| lost = 0; | |
| if( lt != 0L ) | |
| { | |
| if( lt < (long )(-NBITS-1) ) | |
| goto done; /* answer same as larger addend */ | |
| k = (int )lt; | |
| lost = __eshift( ai, k ); /* shift the smaller number down */ | |
| } | |
| else | |
| { | |
| /* exponents were the same, so must compare significands */ | |
| i = __ecmpm( ai, bi ); | |
| if( i == 0 ) | |
| { /* the numbers are identical in magnitude */ | |
| /* if different signs, result is zero */ | |
| if( ai[0] != bi[0] ) | |
| { | |
| __eclear(c); | |
| return; | |
| } | |
| /* if same sign, result is double */ | |
| /* double denomalized tiny number */ | |
| if( (bi[E] == 0) && ((bi[3] & 0x8000) == 0) ) | |
| { | |
| __eshup1( bi ); | |
| goto done; | |
| } | |
| /* add 1 to exponent unless both are zero! */ | |
| for( j=1; j<NI-1; j++ ) | |
| { | |
| if( bi[j] != 0 ) | |
| { | |
| /* This could overflow, but let emovo take care of that. */ | |
| ltb += 1; | |
| break; | |
| } | |
| } | |
| bi[E] = (unsigned short )ltb; | |
| goto done; | |
| } | |
| if( i > 0 ) | |
| { /* put the larger number in bi */ | |
| __emovz( bi, ci ); | |
| __emovz( ai, bi ); | |
| __emovz( ci, ai ); | |
| } | |
| } | |
| if( ai[0] == bi[0] ) | |
| { | |
| __eaddm( ai, bi ); | |
| subflg = 0; | |
| } | |
| else | |
| { | |
| __esubm( ai, bi ); | |
| subflg = 1; | |
| } | |
| __emdnorm( bi, lost, subflg, ltb, 64, NBITS); | |
| done: | |
| __emovo( bi, c ); | |
| } | |
| /* y = largest integer not greater than x | |
| * (truncated toward minus infinity) | |
| * | |
| * unsigned short x[NE], y[NE] | |
| * | |
| * efloor( x, y ); | |
| */ | |
| void __efloor(short unsigned int *x, short unsigned int *y) | |
| { | |
| register unsigned short *p; | |
| int e, expon, i; | |
| unsigned short f[NE]; | |
| const unsigned short bmask[] = { | |
| 0xffff, | |
| 0xfffe, | |
| 0xfffc, | |
| 0xfff8, | |
| 0xfff0, | |
| 0xffe0, | |
| 0xffc0, | |
| 0xff80, | |
| 0xff00, | |
| 0xfe00, | |
| 0xfc00, | |
| 0xf800, | |
| 0xf000, | |
| 0xe000, | |
| 0xc000, | |
| 0x8000, | |
| 0x0000, | |
| }; | |
| __emov( x, f ); /* leave in external format */ | |
| expon = (int )f[NE-1]; | |
| e = (expon & 0x7fff) - (EXONE - 1); | |
| if( e <= 0 ) | |
| { | |
| __eclear(y); | |
| goto isitneg; | |
| } | |
| /* number of bits to clear out */ | |
| e = NBITS - e; | |
| __emov( f, y ); | |
| if( e <= 0 ) | |
| return; | |
| p = &y[0]; | |
| while( e >= 16 ) | |
| { | |
| *p++ = 0; | |
| e -= 16; | |
| } | |
| /* clear the remaining bits */ | |
| *p &= bmask[e]; | |
| /* truncate negatives toward minus infinity */ | |
| isitneg: | |
| if( (unsigned short )expon & (unsigned short )0x8000 ) | |
| { | |
| for( i=0; i<NE-1; i++ ) | |
| { | |
| if( f[i] != y[i] ) | |
| { | |
| __esub( __eone, y, y ); | |
| break; | |
| } | |
| } | |
| } | |
| } | |
| /* | |
| ; Subtract external format numbers. | |
| ; | |
| ; unsigned short a[NE], b[NE], c[NE]; | |
| ; esub( a, b, c ); c = b - a | |
| */ | |
| void __esub(const short unsigned int * a, | |
| const short unsigned int * b, | |
| short unsigned int * c) | |
| { | |
| #ifdef NANS | |
| if( __eisnan(a) ) | |
| { | |
| __emov (a, c); | |
| return; | |
| } | |
| if( __eisnan(b) ) | |
| { | |
| __emov(b,c); | |
| return; | |
| } | |
| /* Infinity minus infinity is a NaN. | |
| * Test for subtracting infinities of the same sign. | |
| */ | |
| if( __eisinf(a) && __eisinf(b) && ((__eisneg (a) ^ __eisneg (b)) == 0)) | |
| { | |
| mtherr( "esub", DOMAIN ); | |
| __enan_NBITS( c ); | |
| return; | |
| } | |
| #endif | |
| __eadd1( a, b, c, 1 ); | |
| } | |
| /* | |
| ; Divide. | |
| ; | |
| ; unsigned short a[NI], b[NI], c[NI]; | |
| ; ediv( a, b, c ); c = b / a | |
| */ | |
| void __ediv(const short unsigned int *a, | |
| const short unsigned int *b, | |
| short unsigned int *c) | |
| { | |
| unsigned short ai[NI], bi[NI]; | |
| int i; | |
| long lt, lta, ltb; | |
| #ifdef NANS | |
| /* Return any NaN input. */ | |
| if( __eisnan(a) ) | |
| { | |
| __emov(a,c); | |
| return; | |
| } | |
| if( __eisnan(b) ) | |
| { | |
| __emov(b,c); | |
| return; | |
| } | |
| /* Zero over zero, or infinity over infinity, is a NaN. */ | |
| if( (__eiszero(a) && __eiszero(b)) | |
| || (__eisinf (a) && __eisinf (b)) ) | |
| { | |
| mtherr( "ediv", DOMAIN ); | |
| __enan_NBITS( c ); | |
| return; | |
| } | |
| #endif | |
| /* Infinity over anything else is infinity. */ | |
| #ifdef INFINITY | |
| if( __eisinf(b) ) | |
| { | |
| if( __eisneg(a) ^ __eisneg(b) ) | |
| *(c+(NE-1)) = 0x8000; | |
| else | |
| *(c+(NE-1)) = 0; | |
| __einfin(c); | |
| return; | |
| } | |
| if( __eisinf(a) ) | |
| { | |
| __eclear(c); | |
| return; | |
| } | |
| #endif | |
| __emovi( a, ai ); | |
| __emovi( b, bi ); | |
| lta = ai[E]; | |
| ltb = bi[E]; | |
| if( bi[E] == 0 ) | |
| { /* See if numerator is zero. */ | |
| for( i=1; i<NI-1; i++ ) | |
| { | |
| if( bi[i] != 0 ) | |
| { | |
| ltb -= __enormlz( bi ); | |
| goto dnzro1; | |
| } | |
| } | |
| __eclear(c); | |
| return; | |
| } | |
| dnzro1: | |
| if( ai[E] == 0 ) | |
| { /* possible divide by zero */ | |
| for( i=1; i<NI-1; i++ ) | |
| { | |
| if( ai[i] != 0 ) | |
| { | |
| lta -= __enormlz( ai ); | |
| goto dnzro2; | |
| } | |
| } | |
| if( ai[0] == bi[0] ) | |
| *(c+(NE-1)) = 0; | |
| else | |
| *(c+(NE-1)) = 0x8000; | |
| __einfin(c); | |
| mtherr( "ediv", SING ); | |
| return; | |
| } | |
| dnzro2: | |
| i = __edivm( ai, bi ); | |
| /* calculate exponent */ | |
| lt = ltb - lta + EXONE; | |
| __emdnorm( bi, i, 0, lt, 64, NBITS ); | |
| /* set the sign */ | |
| if( ai[0] == bi[0] ) | |
| bi[0] = 0; | |
| else | |
| bi[0] = 0Xffff; | |
| __emovo( bi, c ); | |
| } | |
| void __e64toe(short unsigned int *pe, short unsigned int *y) | |
| { | |
| unsigned short yy[NI]; | |
| unsigned short *p, *q, *e; | |
| int i; | |
| e = pe; | |
| p = yy; | |
| for( i=0; i<NE-5; i++ ) | |
| *p++ = 0; | |
| #ifdef IBMPC | |
| for( i=0; i<5; i++ ) | |
| *p++ = *e++; | |
| #endif | |
| #ifdef DEC | |
| for( i=0; i<5; i++ ) | |
| *p++ = *e++; | |
| #endif | |
| #ifdef MIEEE | |
| p = &yy[0] + (NE-1); | |
| *p-- = *e++; | |
| ++e; | |
| for( i=0; i<4; i++ ) | |
| *p-- = *e++; | |
| #endif | |
| #ifdef IBMPC | |
| /* For Intel long double, shift denormal significand up 1 | |
| -- but only if the top significand bit is zero. */ | |
| if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0) | |
| { | |
| unsigned short temp[NI+1]; | |
| __emovi(yy, temp); | |
| __eshup1(temp); | |
| __emovo(temp,y); | |
| return; | |
| } | |
| #endif | |
| #ifdef INFINITY | |
| /* Point to the exponent field. */ | |
| p = &yy[NE-1]; | |
| if( *p == 0x7fff ) | |
| { | |
| #ifdef NANS | |
| #ifdef IBMPC | |
| for( i=0; i<4; i++ ) | |
| { | |
| if((i != 3 && pe[i] != 0) | |
| /* Check for Intel long double infinity pattern. */ | |
| || (i == 3 && pe[i] != 0x8000)) | |
| { | |
| __enan_NBITS( y ); | |
| return; | |
| } | |
| } | |
| #else | |
| for( i=1; i<=4; i++ ) | |
| { | |
| if( pe[i] != 0 ) | |
| { | |
| __enan_NBITS( y ); | |
| return; | |
| } | |
| } | |
| #endif | |
| #endif /* NANS */ | |
| __eclear( y ); | |
| __einfin( y ); | |
| if( *p & 0x8000 ) | |
| __eneg(y); | |
| return; | |
| } | |
| #endif | |
| p = yy; | |
| q = y; | |
| for( i=0; i<NE; i++ ) | |
| *q++ = *p++; | |
| } | |
| #endif /* USE_LDTOA */ |