|  | /* @(#)s_erf.c 1.3 95/01/18 */ | 
|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunSoft, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | /* double erf(double x) | 
|  | * double erfc(double x) | 
|  | *			     x | 
|  | *		      2      |\ | 
|  | *     erf(x)  =  ---------  | exp(-t*t)dt | 
|  | *	 	   sqrt(pi) \| | 
|  | *			     0 | 
|  | * | 
|  | *     erfc(x) =  1-erf(x) | 
|  | *  Note that | 
|  | *		erf(-x) = -erf(x) | 
|  | *		erfc(-x) = 2 - erfc(x) | 
|  | * | 
|  | * Method: | 
|  | *	1. For |x| in [0, 0.84375] | 
|  | *	    erf(x)  = x + x*R(x^2) | 
|  | *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25] | 
|  | *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375] | 
|  | *	   where R = P/Q where P is an odd poly of degree 8 and | 
|  | *	   Q is an odd poly of degree 10. | 
|  | *						 -57.90 | 
|  | *			| R - (erf(x)-x)/x | <= 2 | 
|  | * | 
|  | *	   Remark. The formula is derived by noting | 
|  | *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) | 
|  | *	   and that | 
|  | *          2/sqrt(pi) = 1.128379167095512573896158903121545171688 | 
|  | *	   is close to one. The interval is chosen because the fix | 
|  | *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is | 
|  | *	   near 0.6174), and by some experiment, 0.84375 is chosen to | 
|  | *	   guarantee the error is less than one ulp for erf. | 
|  | * | 
|  | *	2. For |x| in [0.84375,1.25], let s = |x| - 1, and | 
|  | *         c = 0.84506291151 rounded to single (24 bits) | 
|  | *		erf(x)  = sign(x) * (c  + P1(s)/Q1(s)) | 
|  | *		erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0 | 
|  | *			  1+(c+P1(s)/Q1(s))    if x < 0 | 
|  | *		|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 | 
|  | *	   Remark: here we use the taylor series expansion at x=1. | 
|  | *		erf(1+s) = erf(1) + s*Poly(s) | 
|  | *			 = 0.845.. + P1(s)/Q1(s) | 
|  | *	   That is, we use rational approximation to approximate | 
|  | *			erf(1+s) - (c = (single)0.84506291151) | 
|  | *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] | 
|  | *	   where | 
|  | *		P1(s) = degree 6 poly in s | 
|  | *		Q1(s) = degree 6 poly in s | 
|  | * | 
|  | *	3. For x in [1.25,1/0.35(~2.857143)], | 
|  | *		erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) | 
|  | *		erf(x)  = 1 - erfc(x) | 
|  | *	   where | 
|  | *		R1(z) = degree 7 poly in z, (z=1/x^2) | 
|  | *		S1(z) = degree 8 poly in z | 
|  | * | 
|  | *	4. For x in [1/0.35,28] | 
|  | *		erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 | 
|  | *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 | 
|  | *			= 2.0 - tiny		(if x <= -6) | 
|  | *		erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else | 
|  | *		erf(x)  = sign(x)*(1.0 - tiny) | 
|  | *	   where | 
|  | *		R2(z) = degree 6 poly in z, (z=1/x^2) | 
|  | *		S2(z) = degree 7 poly in z | 
|  | * | 
|  | *	Note1: | 
|  | *	   To compute exp(-x*x-0.5625+R/S), let s be a single | 
|  | *	   precision number and s := x; then | 
|  | *		-x*x = -s*s + (s-x)*(s+x) | 
|  | *		exp(-x*x-0.5626+R/S) = | 
|  | *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); | 
|  | *	Note2: | 
|  | *	   Here 4 and 5 make use of the asymptotic series | 
|  | *			  exp(-x*x) | 
|  | *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) | 
|  | *			  x*sqrt(pi) | 
|  | *	   We use rational approximation to approximate | 
|  | *		g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 | 
|  | *	   Here is the error bound for R1/S1 and R2/S2 | 
|  | *		|R1/S1 - f(x)|  < 2**(-62.57) | 
|  | *		|R2/S2 - f(x)|  < 2**(-61.52) | 
|  | * | 
|  | *	5. For inf > x >= 28 | 
|  | *		erf(x)  = sign(x) *(1 - tiny)  (raise inexact) | 
|  | *		erfc(x) = tiny*tiny (raise underflow) if x > 0 | 
|  | *			= 2 - tiny if x<0 | 
|  | * | 
|  | *	7. Special case: | 
|  | *		erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1, | 
|  | *		erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, | 
|  | *		erfc/erf(NaN) is NaN | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* #include "fdlibm.h" */ | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdint.h> | 
|  | #include <errno.h> | 
|  |  | 
|  | #define __ieee754_exp exp | 
|  |  | 
|  | typedef union | 
|  | { | 
|  | double value; | 
|  | struct | 
|  | { | 
|  | uint32_t lsw; | 
|  | uint32_t msw; | 
|  | } parts; | 
|  | } ieee_double_shape_type; | 
|  |  | 
|  |  | 
|  | static inline int __get_hi_word(const double x) | 
|  | { | 
|  | ieee_double_shape_type u; | 
|  | u.value = x; | 
|  | return u.parts.msw; | 
|  | } | 
|  |  | 
|  | static inline void __trunc_lo_word(double *x) | 
|  | { | 
|  | ieee_double_shape_type u; | 
|  | u.value = *x; | 
|  | u.parts.lsw = 0; | 
|  | *x = u.value; | 
|  | } | 
|  |  | 
|  |  | 
|  | static const double | 
|  | tiny=  1e-300, | 
|  | half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ | 
|  | one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ | 
|  | two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ | 
|  | /* c = (float)0.84506291151 */ | 
|  | erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ | 
|  | /* | 
|  | * Coefficients for approximation to  erf on [0,0.84375] | 
|  | */ | 
|  | efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */ | 
|  | efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ | 
|  | pp0 =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ | 
|  | pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ | 
|  | pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ | 
|  | pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ | 
|  | pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ | 
|  | qq1 =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ | 
|  | qq2 =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ | 
|  | qq3 =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ | 
|  | qq4 =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ | 
|  | qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ | 
|  | /* | 
|  | * Coefficients for approximation to  erf  in [0.84375,1.25] | 
|  | */ | 
|  | pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ | 
|  | pa1 =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ | 
|  | pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ | 
|  | pa3 =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ | 
|  | pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ | 
|  | pa5 =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ | 
|  | pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ | 
|  | qa1 =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ | 
|  | qa2 =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ | 
|  | qa3 =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ | 
|  | qa4 =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ | 
|  | qa5 =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ | 
|  | qa6 =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ | 
|  | /* | 
|  | * Coefficients for approximation to  erfc in [1.25,1/0.35] | 
|  | */ | 
|  | ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ | 
|  | ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ | 
|  | ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ | 
|  | ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ | 
|  | ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ | 
|  | ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ | 
|  | ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ | 
|  | ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ | 
|  | sa1 =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ | 
|  | sa2 =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ | 
|  | sa3 =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ | 
|  | sa4 =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ | 
|  | sa5 =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ | 
|  | sa6 =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ | 
|  | sa7 =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ | 
|  | sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ | 
|  | /* | 
|  | * Coefficients for approximation to  erfc in [1/.35,28] | 
|  | */ | 
|  | rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ | 
|  | rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ | 
|  | rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ | 
|  | rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ | 
|  | rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ | 
|  | rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ | 
|  | rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ | 
|  | sb1 =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ | 
|  | sb2 =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ | 
|  | sb3 =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ | 
|  | sb4 =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ | 
|  | sb5 =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ | 
|  | sb6 =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ | 
|  | sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ | 
|  |  | 
|  |  | 
|  | double erf(double x) | 
|  | { | 
|  | int hx, ix, i; | 
|  | double R, S, P, Q, s, y, z, r; | 
|  | hx = __get_hi_word(x); | 
|  | ix = hx & 0x7fffffff; | 
|  | if (ix >= 0x7ff00000) {		/* erf(nan)=nan */ | 
|  | i = ((unsigned)hx>>31)<<1; | 
|  | return (double)(1-i)+one/x;	/* erf(+-inf)=+-1 */ | 
|  | } | 
|  |  | 
|  | if (ix < 0x3feb0000) {		/* |x|<0.84375 */ | 
|  | if (ix < 0x3e300000) {	/* |x|<2**-28 */ | 
|  | if (ix < 0x00800000) | 
|  | return 0.125*(8.0*x+efx8*x);  /*avoid underflow */ | 
|  | return x + efx*x; | 
|  | } | 
|  | z = x*x; | 
|  | r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); | 
|  | s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); | 
|  | y = r/s; | 
|  | return x + x*y; | 
|  | } | 
|  | if (ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */ | 
|  | s = fabs(x)-one; | 
|  | P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); | 
|  | Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); | 
|  | if (hx >= 0) | 
|  | return erx + P/Q; | 
|  | else | 
|  | return -erx - P/Q; | 
|  | } | 
|  | if (ix >= 0x40180000) {		/* inf>|x|>=6 */ | 
|  | if (hx >= 0) | 
|  | return one-tiny; | 
|  | else | 
|  | return tiny-one; | 
|  | } | 
|  | x = fabs(x); | 
|  | s = one/(x*x); | 
|  | if (ix < 0x4006DB6E) {	/* |x| < 1/0.35 */ | 
|  | R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( | 
|  | ra5+s*(ra6+s*ra7)))))); | 
|  | S = one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( | 
|  | sa5+s*(sa6+s*(sa7+s*sa8))))))); | 
|  | } else {	/* |x| >= 1/0.35 */ | 
|  | R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( | 
|  | rb5+s*rb6))))); | 
|  | S = one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( | 
|  | sb5+s*(sb6+s*sb7)))))); | 
|  | } | 
|  | z = x; | 
|  | __trunc_lo_word(&z); | 
|  | r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S); | 
|  | if (hx >= 0) | 
|  | return one-r/x; | 
|  | else | 
|  | return  r/x-one; | 
|  | } | 
|  |  | 
|  | double erfc(double x) | 
|  | { | 
|  | int hx,ix; | 
|  | double R,S,P,Q,s,y,z,r; | 
|  | hx = __get_hi_word(x); | 
|  | ix = hx&0x7fffffff; | 
|  | if (ix >= 0x7ff00000) {			/* erfc(nan)=nan */ | 
|  | /* erfc(+-inf)=0,2 */ | 
|  | return (double)(((unsigned)hx>>31)<<1)+one/x; | 
|  | } | 
|  |  | 
|  | if (ix < 0x3feb0000) {		/* |x|<0.84375 */ | 
|  | if (ix < 0x3c700000)	/* |x|<2**-56 */ | 
|  | return one-x; | 
|  | z = x*x; | 
|  | r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); | 
|  | s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); | 
|  | y = r/s; | 
|  | if (hx < 0x3fd00000) {	/* x<1/4 */ | 
|  | return one-(x+x*y); | 
|  | } else { | 
|  | r = x*y; | 
|  | r += (x-half); | 
|  | return half - r ; | 
|  | } | 
|  | } | 
|  | if (ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */ | 
|  | s = fabs(x)-one; | 
|  | P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); | 
|  | Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); | 
|  | if (hx >= 0) { | 
|  | z  = one-erx; return z - P/Q; | 
|  | } else { | 
|  | z = erx+P/Q; return one+z; | 
|  | } | 
|  | } | 
|  | if (ix < 0x403c0000) {		/* |x|<28 */ | 
|  | x = fabs(x); | 
|  | s = one/(x*x); | 
|  | if (ix < 0x4006DB6D) {	/* |x| < 1/.35 ~ 2.857143*/ | 
|  | R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( | 
|  | ra5+s*(ra6+s*ra7)))))); | 
|  | S = one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( | 
|  | sa5+s*(sa6+s*(sa7+s*sa8))))))); | 
|  | } else {			/* |x| >= 1/.35 ~ 2.857143 */ | 
|  | if (hx < 0 && ix >= 0x40180000) | 
|  | return two-tiny; /* x < -6 */ | 
|  | R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( | 
|  | rb5+s*rb6))))); | 
|  | S = one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( | 
|  | sb5+s*(sb6+s*sb7)))))); | 
|  | } | 
|  | z = x; | 
|  | __trunc_lo_word(&z); | 
|  | r = __ieee754_exp(-z*z-0.5625)* | 
|  | __ieee754_exp((z-x)*(z+x)+R/S); | 
|  | if (hx > 0) | 
|  | return r/x; | 
|  | else | 
|  | return two-r/x; | 
|  | } else { | 
|  | /* set range error */ | 
|  | errno = ERANGE; | 
|  | if (hx > 0) | 
|  | return tiny*tiny; | 
|  | else | 
|  | return two-tiny; | 
|  | } | 
|  | } | 
|  |  |