|  | /* | 
|  | This Software is provided under the Zope Public License (ZPL) Version 2.1. | 
|  |  | 
|  | Copyright (c) 2009, 2010 by the mingw-w64 project | 
|  |  | 
|  | See the AUTHORS file for the list of contributors to the mingw-w64 project. | 
|  |  | 
|  | This license has been certified as open source. It has also been designated | 
|  | as GPL compatible by the Free Software Foundation (FSF). | 
|  |  | 
|  | Redistribution and use in source and binary forms, with or without | 
|  | modification, are permitted provided that the following conditions are met: | 
|  |  | 
|  | 1. Redistributions in source code must retain the accompanying copyright | 
|  | notice, this list of conditions, and the following disclaimer. | 
|  | 2. Redistributions in binary form must reproduce the accompanying | 
|  | copyright notice, this list of conditions, and the following disclaimer | 
|  | in the documentation and/or other materials provided with the | 
|  | distribution. | 
|  | 3. Names of the copyright holders must not be used to endorse or promote | 
|  | products derived from this software without prior written permission | 
|  | from the copyright holders. | 
|  | 4. The right to distribute this software or to use it for any purpose does | 
|  | not give you the right to use Servicemarks (sm) or Trademarks (tm) of | 
|  | the copyright holders.  Use of them is covered by separate agreement | 
|  | with the copyright holders. | 
|  | 5. If any files are modified, you must cause the modified files to carry | 
|  | prominent notices stating that you changed the files and the date of | 
|  | any change. | 
|  |  | 
|  | Disclaimer | 
|  |  | 
|  | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY EXPRESSED | 
|  | OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
|  | OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO | 
|  | EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
|  | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, | 
|  | OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
|  | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | 
|  | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | 
|  | EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | __FLT_TYPE __complex__ __cdecl | 
|  | __FLT_ABI(casinh) (__FLT_TYPE __complex__ z) | 
|  | { | 
|  | __complex__ __FLT_TYPE ret; | 
|  | __complex__ __FLT_TYPE x; | 
|  | __FLT_TYPE arz, aiz; | 
|  | int r_class = fpclassify (__real__ z); | 
|  | int i_class = fpclassify (__imag__ z); | 
|  |  | 
|  | if (i_class == FP_INFINITE) | 
|  | { | 
|  | __real__ ret = __FLT_ABI(copysign) (__FLT_HUGE_VAL, __real__ z); | 
|  | __imag__ ret = (r_class == FP_NAN | 
|  | ? __FLT_NAN | 
|  | : (__FLT_ABI(copysign) ((r_class != FP_NAN && r_class != FP_INFINITE) ? __FLT_PI_2 : __FLT_PI_4, __imag__ z))); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (r_class == FP_INFINITE) | 
|  | { | 
|  | __real__ ret = __real__ z; | 
|  | __imag__ ret = (i_class != FP_NAN | 
|  | ? __FLT_ABI(copysign) (__FLT_CST(0.0), __imag__ z) | 
|  | : __FLT_NAN); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (r_class == FP_NAN) | 
|  | { | 
|  | __real__ ret = __real__ z; | 
|  | __imag__ ret = (i_class == FP_ZERO | 
|  | ? __FLT_ABI(copysign) (__FLT_CST(0.0), __imag__ z) | 
|  | : __FLT_NAN); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (i_class == FP_NAN) | 
|  | { | 
|  | __real__ ret = __FLT_NAN; | 
|  | __imag__ ret = __FLT_NAN; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (r_class == FP_ZERO && i_class == FP_ZERO) | 
|  | return z; | 
|  |  | 
|  | /* casinh(z) = log(z + sqrt(z*z + 1)) */ | 
|  |  | 
|  | /* Use symmetries to perform the calculation in the first quadrant. */ | 
|  | arz = __FLT_ABI(fabs) (__real__ z); | 
|  | aiz = __FLT_ABI(fabs) (__imag__ z); | 
|  |  | 
|  | if (arz >= __FLT_CST(1.0)/__FLT_EPSILON | 
|  | || aiz >= __FLT_CST(1.0)/__FLT_EPSILON) | 
|  | { | 
|  | /* For large z, z + sqrt(z*z + 1) is approximately 2*z. | 
|  | Use that approximation to avoid overflow when squaring. */ | 
|  | __real__ x = arz; | 
|  | __imag__ x = aiz; | 
|  | ret = __FLT_ABI(clog) (x); | 
|  | __real__ ret += M_LN2; | 
|  | } | 
|  | else if (aiz < __FLT_CST(1.0) && arz <= __FLT_EPSILON) | 
|  | { | 
|  | /* Taylor series expansion around arz=0 for z + sqrt(z*z + 1): | 
|  | c = arz + sqrt(1-aiz^2) + i*(aiz + arz*aiz / sqrt(1-aiz^2)) + O(arz^2) | 
|  | Identity: clog(c) = log(|c|) + i*arg(c) | 
|  | For real part of result: | 
|  | |c| = 1 + arz / sqrt(1-aiz^2) + O(arz^2)  (Taylor series expansion) | 
|  | For imaginary part of result: | 
|  | c = (arz + sqrt(1-aiz^2))/sqrt(1-aiz^2) * (sqrt(1-aiz^2) + i*aiz) + O(arz^6) | 
|  | */ | 
|  | __FLT_TYPE s1maiz2 = __FLT_ABI(sqrt) ((__FLT_CST(1.0)+aiz)*(__FLT_CST(1.0)-aiz)); | 
|  | __real__ ret = __FLT_ABI(log1p) (arz / s1maiz2); | 
|  | __imag__ ret = __FLT_ABI(atan2) (aiz, s1maiz2); | 
|  | } | 
|  | else if (aiz < __FLT_CST(1.0) && arz*arz <= __FLT_EPSILON) | 
|  | { | 
|  | /* Taylor series expansion around arz=0 for z + sqrt(z*z + 1): | 
|  | c = arz + sqrt(1-aiz^2) + arz^2 / (2*(1-aiz^2)^(3/2)) + i*(aiz + arz*aiz / sqrt(1-aiz^2)) + O(arz^4) | 
|  | Identity: clog(c) = log(|c|) + i*arg(c) | 
|  | For real part of result: | 
|  | |c| = 1 + arz / sqrt(1-aiz^2) + arz^2/(2*(1-aiz^2)) + O(arz^3)  (Taylor series expansion) | 
|  | For imaginary part of result: | 
|  | c = 1/sqrt(1-aiz^2) * ((1-aiz^2) + arz*sqrt(1-aiz^2) + arz^2/(2*(1-aiz^2)) + i*aiz*(sqrt(1-aiz^2)+arz)) + O(arz^3) | 
|  | */ | 
|  | __FLT_TYPE onemaiz2 = (__FLT_CST(1.0)+aiz)*(__FLT_CST(1.0)-aiz); | 
|  | __FLT_TYPE s1maiz2 = __FLT_ABI(sqrt) (onemaiz2); | 
|  | __FLT_TYPE arz2red = arz * arz / __FLT_CST(2.0) / s1maiz2; | 
|  | __real__ ret = __FLT_ABI(log1p) ((arz + arz2red) / s1maiz2); | 
|  | __imag__ ret = __FLT_ABI(atan2) (aiz * (s1maiz2 + arz), | 
|  | onemaiz2 + arz*s1maiz2 + arz2red); | 
|  | } | 
|  | else | 
|  | { | 
|  | __real__ x = (arz - aiz) * (arz + aiz) + __FLT_CST(1.0); | 
|  | __imag__ x = __FLT_CST(2.0) * arz * aiz; | 
|  |  | 
|  | x = __FLT_ABI(csqrt) (x); | 
|  |  | 
|  | __real__ x += arz; | 
|  | __imag__ x += aiz; | 
|  |  | 
|  | ret = __FLT_ABI(clog) (x); | 
|  | } | 
|  |  | 
|  | /* adjust signs for input quadrant */ | 
|  | __real__ ret = __FLT_ABI(copysign) (__real__ ret, __real__ z); | 
|  | __imag__ ret = __FLT_ABI(copysign) (__imag__ ret, __imag__ z); | 
|  |  | 
|  | return ret; | 
|  | } |