| /** | |
| * This file has no copyright assigned and is placed in the Public Domain. | |
| * This file is part of the w64 mingw-runtime package. | |
| * No warranty is given; refer to the file DISCLAIMER within this package. | |
| */ | |
| #include "cephes_mconf.h" | |
| #ifndef _SET_ERRNO | |
| #define _SET_ERRNO(x) | |
| #endif | |
| long double __powil( x, nn ) | |
| long double x; | |
| int nn; | |
| { | |
| long double w, y; | |
| long double s; | |
| int n, e, sign, asign, lx; | |
| if( x == 0.0L ) | |
| { | |
| if( nn == 0 ) | |
| return( 1.0L ); | |
| else if( nn < 0 ) | |
| return( INFINITYL ); | |
| else | |
| return( 0.0L ); | |
| } | |
| if( nn == 0 ) | |
| return( 1.0L ); | |
| if( x < 0.0L ) | |
| { | |
| asign = -1; | |
| x = -x; | |
| } | |
| else | |
| asign = 0; | |
| if( nn < 0 ) | |
| { | |
| sign = -1; | |
| n = -nn; | |
| } | |
| else | |
| { | |
| sign = 1; | |
| n = nn; | |
| } | |
| /* Overflow detection */ | |
| /* Calculate approximate logarithm of answer */ | |
| s = x; | |
| s = frexpl( s, &lx ); | |
| e = (lx - 1)*n; | |
| if( (e == 0) || (e > 64) || (e < -64) ) | |
| { | |
| s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L); | |
| s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L; | |
| } | |
| else | |
| { | |
| s = LOGE2L * e; | |
| } | |
| if( s > MAXLOGL ) | |
| { | |
| mtherr( "__powil", OVERFLOW ); | |
| _SET_ERRNO(ERANGE); | |
| y = INFINITYL; | |
| goto done; | |
| } | |
| if( s < MINLOGL ) | |
| { | |
| mtherr( "__powil", UNDERFLOW ); | |
| _SET_ERRNO(ERANGE); | |
| return(0.0L); | |
| } | |
| /* Handle tiny denormal answer, but with less accuracy | |
| * since roundoff error in 1.0/x will be amplified. | |
| * The precise demarcation should be the gradual underflow threshold. | |
| */ | |
| if( s < (-MAXLOGL+2.0L) ) | |
| { | |
| x = 1.0L/x; | |
| sign = -sign; | |
| } | |
| /* First bit of the power */ | |
| if( n & 1 ) | |
| y = x; | |
| else | |
| { | |
| y = 1.0L; | |
| asign = 0; | |
| } | |
| w = x; | |
| n >>= 1; | |
| while( n ) | |
| { | |
| w = w * w; /* arg to the 2-to-the-kth power */ | |
| if( n & 1 ) /* if that bit is set, then include in product */ | |
| y *= w; | |
| n >>= 1; | |
| } | |
| done: | |
| if( asign ) | |
| y = -y; /* odd power of negative number */ | |
| if( sign < 0 ) | |
| y = 1.0L/y; | |
| return(y); | |
| } |