| /** | |
| * This file has no copyright assigned and is placed in the Public Domain. | |
| * This file is part of the w64 mingw-runtime package. | |
| * No warranty is given; refer to the file DISCLAIMER within this package. | |
| */ | |
| #include <math.h> | |
| #include "cephes_mconf.h" | |
| static const double CBRT2 = 1.2599210498948731647672; | |
| static const double CBRT4 = 1.5874010519681994747517; | |
| static const double CBRT2I = 0.79370052598409973737585; | |
| static const double CBRT4I = 0.62996052494743658238361; | |
| #ifndef __MINGW32__ | |
| #ifdef ANSIPROT | |
| extern double frexp ( double, int * ); | |
| extern double ldexp ( double, int ); | |
| extern int isnan ( double ); | |
| extern int isfinite ( double ); | |
| #else | |
| double frexp(), ldexp(); | |
| int isnan(), isfinite(); | |
| #endif | |
| #endif | |
| double cbrt(x) | |
| double x; | |
| { | |
| int e, rem, sign; | |
| double z; | |
| #ifdef __MINGW32__ | |
| if (!isfinite (x) || x == 0 ) | |
| return x; | |
| #else | |
| #ifdef NANS | |
| if( isnan(x) ) | |
| return x; | |
| #endif | |
| #ifdef INFINITIES | |
| if( !isfinite(x) ) | |
| return x; | |
| #endif | |
| if( x == 0 ) | |
| return( x ); | |
| #endif /* __MINGW32__ */ | |
| if( x > 0 ) | |
| sign = 1; | |
| else | |
| { | |
| sign = -1; | |
| x = -x; | |
| } | |
| z = x; | |
| /* extract power of 2, leaving | |
| * mantissa between 0.5 and 1 | |
| */ | |
| x = frexp( x, &e ); | |
| /* Approximate cube root of number between .5 and 1, | |
| * peak relative error = 9.2e-6 | |
| */ | |
| x = (((-1.3466110473359520655053e-1 * x | |
| + 5.4664601366395524503440e-1) * x | |
| - 9.5438224771509446525043e-1) * x | |
| + 1.1399983354717293273738e0 ) * x | |
| + 4.0238979564544752126924e-1; | |
| /* exponent divided by 3 */ | |
| if( e >= 0 ) | |
| { | |
| rem = e; | |
| e /= 3; | |
| rem -= 3*e; | |
| if( rem == 1 ) | |
| x *= CBRT2; | |
| else if( rem == 2 ) | |
| x *= CBRT4; | |
| } | |
| /* argument less than 1 */ | |
| else | |
| { | |
| e = -e; | |
| rem = e; | |
| e /= 3; | |
| rem -= 3*e; | |
| if( rem == 1 ) | |
| x *= CBRT2I; | |
| else if( rem == 2 ) | |
| x *= CBRT4I; | |
| e = -e; | |
| } | |
| /* multiply by power of 2 */ | |
| x = ldexp( x, e ); | |
| /* Newton iteration */ | |
| x -= ( x - (z/(x*x)) )*0.33333333333333333333; | |
| #ifdef DEC | |
| x -= ( x - (z/(x*x)) )/3.0; | |
| #else | |
| x -= ( x - (z/(x*x)) )*0.33333333333333333333; | |
| #endif | |
| if( sign < 0 ) | |
| x = -x; | |
| return(x); | |
| } |