blob: d712326c696e4ead0204fb85578051ffee435990 [file] [log] [blame]
/*
* Copyright (c) 2008-2010 Stefan Krah. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include mpdecimal_header
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "bits.h"
#include "difradix2.h"
#include "mptypes.h"
#include "numbertheory.h"
#include "transpose.h"
#include "umodarith.h"
#include "sixstep.h"
/*
* A variant of the six-step algorithm from:
*
* David H. Bailey: FFTs in External or Hierarchical Memory, Journal of
* Supercomputing, vol. 4, no. 1 (March 1990), p. 23-35.
*
* URL: http://crd.lbl.gov/~dhbailey/dhbpapers/
*/
/* forward transform with sign = -1 */
int
six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
struct fnt_params *tparams;
mpd_size_t log2n, C, R;
mpd_uint_t kernel;
mpd_uint_t umod;
#ifdef PPRO
double dmod;
uint32_t dinvmod[3];
#endif
mpd_uint_t *x, w0, w1, wstep;
mpd_size_t i, k;
assert(ispower2(n));
assert(n >= 16);
assert(n <= MPD_MAXTRANSFORM_2N);
log2n = mpd_bsr(n);
C = (ONE_UM << (log2n / 2)); /* number of columns */
R = (ONE_UM << (log2n - (log2n / 2))); /* number of rows */
/* view 'a' as an RxC matrix, transpose */
if (!transpose_pow2(a, R, C)) {
return 0;
}
if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) {
return 0;
}
for (x = a; x < a+n; x += R) {
fnt_dif2(x, R, tparams);
}
if (!transpose_pow2(a, C, R)) {
__mingw_dfp_get_globals()->mpd_free(tparams);
return 0;
}
SETMODULUS(modnum);
kernel = _mpd_getkernel(n, -1, modnum);
for (i = 1; i < R; i++) {
w0 = 1;
w1 = POWMOD(kernel, i);
wstep = MULMOD(w1, w1);
for (k = 0; k < C; k += 2) {
mpd_uint_t x0 = a[i*C+k];
mpd_uint_t x1 = a[i*C+k+1];
MULMOD2(&x0, w0, &x1, w1);
MULMOD2C(&w0, &w1, wstep);
a[i*C+k] = x0;
a[i*C+k+1] = x1;
}
}
if (C != R) {
__mingw_dfp_get_globals()->mpd_free(tparams);
if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) {
return 0;
}
}
for (x = a; x < a+n; x += C) {
fnt_dif2(x, C, tparams);
}
__mingw_dfp_get_globals()->mpd_free(tparams);
#if 0
/* An unordered transform is sufficient for convolution. */
if (ordered) {
if (!transpose_pow2(a, R, C)) {
return 0;
}
}
#endif
return 1;
}
/* reverse transform, sign = 1 */
int
inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
struct fnt_params *tparams;
mpd_size_t log2n, C, R;
mpd_uint_t kernel;
mpd_uint_t umod;
#ifdef PPRO
double dmod;
uint32_t dinvmod[3];
#endif
mpd_uint_t *x, w0, w1, wstep;
mpd_size_t i, k;
assert(ispower2(n));
assert(n >= 16);
assert(n <= MPD_MAXTRANSFORM_2N);
log2n = mpd_bsr(n);
C = (ONE_UM << (log2n / 2)); /* number of columns */
R = (ONE_UM << (log2n - (log2n / 2))); /* number of rows */
#if 0
/* An unordered transform is sufficient for convolution. */
if (ordered) {
if (!transpose_pow2(a, C, R)) {
return 0;
}
}
#endif
if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) {
return 0;
}
for (x = a; x < a+n; x += C) {
fnt_dif2(x, C, tparams);
}
if (!transpose_pow2(a, R, C)) {
__mingw_dfp_get_globals()->mpd_free(tparams);
return 0;
}
SETMODULUS(modnum);
kernel = _mpd_getkernel(n, 1, modnum);
for (i = 1; i < C; i++) {
w0 = 1;
w1 = POWMOD(kernel, i);
wstep = MULMOD(w1, w1);
for (k = 0; k < R; k += 2) {
mpd_uint_t x0 = a[i*R+k];
mpd_uint_t x1 = a[i*R+k+1];
MULMOD2(&x0, w0, &x1, w1);
MULMOD2C(&w0, &w1, wstep);
a[i*R+k] = x0;
a[i*R+k+1] = x1;
}
}
if (R != C) {
__mingw_dfp_get_globals()->mpd_free(tparams);
if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) {
return 0;
}
}
for (x = a; x < a+n; x += R) {
fnt_dif2(x, R, tparams);
}
__mingw_dfp_get_globals()->mpd_free(tparams);
if (!transpose_pow2(a, C, R)) {
return 0;
}
return 1;
}