| /** |
| * This file has no copyright assigned and is placed in the Public Domain. |
| * This file is part of the w64 mingw-runtime package. |
| * No warranty is given; refer to the file DISCLAIMER within this package. |
| */ |
| #include "cephes_emath.h" |
| |
| /* |
| * The constants are for 64 bit precision. |
| */ |
| |
| |
| /* Move in external format number, |
| * converting it to internal format. |
| */ |
| void __emovi(const short unsigned int * __restrict__ a, |
| short unsigned int * __restrict__ b) |
| { |
| register const unsigned short *p; |
| register unsigned short *q; |
| int i; |
| |
| q = b; |
| p = a + (NE-1); /* point to last word of external number */ |
| /* get the sign bit */ |
| if( *p & 0x8000 ) |
| *q++ = 0xffff; |
| else |
| *q++ = 0; |
| /* get the exponent */ |
| *q = *p--; |
| *q++ &= 0x7fff; /* delete the sign bit */ |
| #ifdef INFINITY |
| if( (*(q-1) & 0x7fff) == 0x7fff ) |
| { |
| #ifdef NANS |
| if( __eisnan(a) ) |
| { |
| *q++ = 0; |
| for( i=3; i<NI; i++ ) |
| *q++ = *p--; |
| return; |
| } |
| #endif |
| for( i=2; i<NI; i++ ) |
| *q++ = 0; |
| return; |
| } |
| #endif |
| /* clear high guard word */ |
| *q++ = 0; |
| /* move in the significand */ |
| for( i=0; i<NE-1; i++ ) |
| *q++ = *p--; |
| /* clear low guard word */ |
| *q = 0; |
| } |
| |
| |
| /* |
| ; Add significands |
| ; x + y replaces y |
| */ |
| |
| void __eaddm(const short unsigned int * __restrict__ x, |
| short unsigned int * __restrict__ y) |
| { |
| register unsigned long a; |
| int i; |
| unsigned int carry; |
| |
| x += NI-1; |
| y += NI-1; |
| carry = 0; |
| for( i=M; i<NI; i++ ) |
| { |
| a = (unsigned long )(*x) + (unsigned long )(*y) + carry; |
| if( a & 0x10000 ) |
| carry = 1; |
| else |
| carry = 0; |
| *y = (unsigned short )a; |
| --x; |
| --y; |
| } |
| } |
| |
| /* |
| ; Subtract significands |
| ; y - x replaces y |
| */ |
| |
| void __esubm(const short unsigned int * __restrict__ x, |
| short unsigned int * __restrict__ y) |
| { |
| unsigned long a; |
| int i; |
| unsigned int carry; |
| |
| x += NI-1; |
| y += NI-1; |
| carry = 0; |
| for( i=M; i<NI; i++ ) |
| { |
| a = (unsigned long )(*y) - (unsigned long )(*x) - carry; |
| if( a & 0x10000 ) |
| carry = 1; |
| else |
| carry = 0; |
| *y = (unsigned short )a; |
| --x; |
| --y; |
| } |
| } |
| |
| |
| /* Multiply significand of e-type number b |
| by 16-bit quantity a, e-type result to c. */ |
| |
| static void __m16m(short unsigned int a, |
| short unsigned int * __restrict__ b, |
| short unsigned int * __restrict__ c) |
| { |
| register unsigned short *pp; |
| register unsigned long carry; |
| unsigned short *ps; |
| unsigned short p[NI]; |
| unsigned long aa, m; |
| int i; |
| |
| aa = a; |
| pp = &p[NI-2]; |
| *pp++ = 0; |
| *pp = 0; |
| ps = &b[NI-1]; |
| |
| for( i=M+1; i<NI; i++ ) |
| { |
| if( *ps == 0 ) |
| { |
| --ps; |
| --pp; |
| *(pp-1) = 0; |
| } |
| else |
| { |
| m = (unsigned long) aa * *ps--; |
| carry = (m & 0xffff) + *pp; |
| *pp-- = (unsigned short )carry; |
| carry = (carry >> 16) + (m >> 16) + *pp; |
| *pp = (unsigned short )carry; |
| *(pp-1) = carry >> 16; |
| } |
| } |
| for( i=M; i<NI; i++ ) |
| c[i] = p[i]; |
| } |
| |
| |
| /* Divide significands. Neither the numerator nor the denominator |
| is permitted to have its high guard word nonzero. */ |
| |
| |
| int __edivm(short unsigned int * __restrict__ den, |
| short unsigned int * __restrict__ num) |
| { |
| int i; |
| register unsigned short *p; |
| unsigned long tnum; |
| unsigned short j, tdenm, tquot; |
| unsigned short tprod[NI+1]; |
| unsigned short equot[NI]; |
| |
| p = &equot[0]; |
| *p++ = num[0]; |
| *p++ = num[1]; |
| |
| for( i=M; i<NI; i++ ) |
| { |
| *p++ = 0; |
| } |
| __eshdn1( num ); |
| tdenm = den[M+1]; |
| for( i=M; i<NI; i++ ) |
| { |
| /* Find trial quotient digit (the radix is 65536). */ |
| tnum = (((unsigned long) num[M]) << 16) + num[M+1]; |
| |
| /* Do not execute the divide instruction if it will overflow. */ |
| if( (tdenm * 0xffffUL) < tnum ) |
| tquot = 0xffff; |
| else |
| tquot = tnum / tdenm; |
| |
| /* Prove that the divide worked. */ |
| /* |
| tcheck = (unsigned long )tquot * tdenm; |
| if( tnum - tcheck > tdenm ) |
| tquot = 0xffff; |
| */ |
| /* Multiply denominator by trial quotient digit. */ |
| __m16m( tquot, den, tprod ); |
| /* The quotient digit may have been overestimated. */ |
| if( __ecmpm( tprod, num ) > 0 ) |
| { |
| tquot -= 1; |
| __esubm( den, tprod ); |
| if( __ecmpm( tprod, num ) > 0 ) |
| { |
| tquot -= 1; |
| __esubm( den, tprod ); |
| } |
| } |
| __esubm( tprod, num ); |
| equot[i] = tquot; |
| __eshup6(num); |
| } |
| /* test for nonzero remainder after roundoff bit */ |
| p = &num[M]; |
| j = 0; |
| for( i=M; i<NI; i++ ) |
| { |
| j |= *p++; |
| } |
| if( j ) |
| j = 1; |
| |
| for( i=0; i<NI; i++ ) |
| num[i] = equot[i]; |
| |
| return( (int )j ); |
| } |
| |
| |
| |
| /* Multiply significands */ |
| int __emulm(const short unsigned int * __restrict__ a, |
| short unsigned int * __restrict__ b) |
| { |
| const unsigned short *p; |
| unsigned short *q; |
| unsigned short pprod[NI]; |
| unsigned short equot[NI]; |
| unsigned short j; |
| int i; |
| |
| equot[0] = b[0]; |
| equot[1] = b[1]; |
| for( i=M; i<NI; i++ ) |
| equot[i] = 0; |
| |
| j = 0; |
| p = &a[NI-1]; |
| q = &equot[NI-1]; |
| for( i=M+1; i<NI; i++ ) |
| { |
| if( *p == 0 ) |
| { |
| --p; |
| } |
| else |
| { |
| __m16m( *p--, b, pprod ); |
| __eaddm(pprod, equot); |
| } |
| j |= *q; |
| __eshdn6(equot); |
| } |
| |
| for( i=0; i<NI; i++ ) |
| b[i] = equot[i]; |
| |
| /* return flag for lost nonzero bits */ |
| return( (int)j ); |
| } |
| |
| |
| |
| /* |
| * Normalize and round off. |
| * |
| * The internal format number to be rounded is "s". |
| * Input "lost" indicates whether the number is exact. |
| * This is the so-called sticky bit. |
| * |
| * Input "subflg" indicates whether the number was obtained |
| * by a subtraction operation. In that case if lost is nonzero |
| * then the number is slightly smaller than indicated. |
| * |
| * Input "exp" is the biased exponent, which may be negative. |
| * the exponent field of "s" is ignored but is replaced by |
| * "exp" as adjusted by normalization and rounding. |
| * |
| * Input "rcntrl" is the rounding control. |
| * |
| * Input "rnprc" is precison control (64 or NBITS). |
| */ |
| |
| void __emdnorm(short unsigned int *s, int lost, int subflg, int exp, int rcntrl, int rndprc) |
| { |
| int i, j; |
| unsigned short r; |
| int rw = NI-1; /* low guard word */ |
| int re = NI-2; |
| const unsigned short rmsk = 0xffff; |
| const unsigned short rmbit = 0x8000; |
| #if NE == 6 |
| unsigned short rbit[NI] = {0,0,0,0,0,0,0,1,0}; |
| #else |
| unsigned short rbit[NI] = {0,0,0,0,0,0,0,0,0,0,0,1,0}; |
| #endif |
| |
| /* Normalize */ |
| j = __enormlz( s ); |
| |
| /* a blank significand could mean either zero or infinity. */ |
| #ifndef INFINITY |
| if( j > NBITS ) |
| { |
| __ecleazs( s ); |
| return; |
| } |
| #endif |
| exp -= j; |
| #ifndef INFINITY |
| if( exp >= 32767L ) |
| goto overf; |
| #else |
| if( (j > NBITS) && (exp < 32767L) ) |
| { |
| __ecleazs( s ); |
| return; |
| } |
| #endif |
| if( exp < 0L ) |
| { |
| if( exp > (long )(-NBITS-1) ) |
| { |
| j = (int )exp; |
| i = __eshift( s, j ); |
| if( i ) |
| lost = 1; |
| } |
| else |
| { |
| __ecleazs( s ); |
| return; |
| } |
| } |
| /* Round off, unless told not to by rcntrl. */ |
| if( rcntrl == 0 ) |
| goto mdfin; |
| if (rndprc == 64) |
| { |
| rw = 7; |
| re = 6; |
| rbit[NI-2] = 0; |
| rbit[6] = 1; |
| } |
| |
| /* Shift down 1 temporarily if the data structure has an implied |
| * most significant bit and the number is denormal. |
| * For rndprc = 64 or NBITS, there is no implied bit. |
| * But Intel long double denormals lose one bit of significance even so. |
| */ |
| #if IBMPC |
| if( (exp <= 0) && (rndprc != NBITS) ) |
| #else |
| if( (exp <= 0) && (rndprc != 64) && (rndprc != NBITS) ) |
| #endif |
| { |
| lost |= s[NI-1] & 1; |
| __eshdn1(s); |
| } |
| /* Clear out all bits below the rounding bit, |
| * remembering in r if any were nonzero. |
| */ |
| r = s[rw] & rmsk; |
| if( rndprc < NBITS ) |
| { |
| i = rw + 1; |
| while( i < NI ) |
| { |
| if( s[i] ) |
| r |= 1; |
| s[i] = 0; |
| ++i; |
| } |
| } |
| s[rw] &= (rmsk ^ 0xffff); |
| if( (r & rmbit) != 0 ) |
| { |
| if( r == rmbit ) |
| { |
| if( lost == 0 ) |
| { /* round to even */ |
| if( (s[re] & 1) == 0 ) |
| goto mddone; |
| } |
| else |
| { |
| if( subflg != 0 ) |
| goto mddone; |
| } |
| } |
| __eaddm( rbit, s ); |
| } |
| mddone: |
| #if IBMPC |
| if( (exp <= 0) && (rndprc != NBITS) ) |
| #else |
| if( (exp <= 0) && (rndprc != 64) && (rndprc != NBITS) ) |
| #endif |
| { |
| __eshup1(s); |
| } |
| if( s[2] != 0 ) |
| { /* overflow on roundoff */ |
| __eshdn1(s); |
| exp += 1; |
| } |
| mdfin: |
| s[NI-1] = 0; |
| if( exp >= 32767L ) |
| { |
| #ifndef INFINITY |
| overf: |
| #endif |
| #ifdef INFINITY |
| s[1] = 32767; |
| for( i=2; i<NI-1; i++ ) |
| s[i] = 0; |
| #else |
| s[1] = 32766; |
| s[2] = 0; |
| for( i=M+1; i<NI-1; i++ ) |
| s[i] = 0xffff; |
| s[NI-1] = 0; |
| if( (rndprc < 64) || (rndprc == 113) ) |
| s[rw] &= (rmsk ^ 0xffff); |
| #endif |
| return; |
| } |
| if( exp < 0 ) |
| s[1] = 0; |
| else |
| s[1] = (unsigned short )exp; |
| } |
| |
| |
| /* |
| ; Multiply. |
| ; |
| ; unsigned short a[NE], b[NE], c[NE]; |
| ; emul( a, b, c ); c = b * a |
| */ |
| void __emul(const short unsigned int *a, |
| const short unsigned int *b, |
| short unsigned int *c) |
| { |
| unsigned short ai[NI], bi[NI]; |
| int i, j; |
| long lt, lta, ltb; |
| |
| #ifdef NANS |
| /* NaN times anything is the same NaN. */ |
| if( __eisnan(a) ) |
| { |
| __emov(a,c); |
| return; |
| } |
| if( __eisnan(b) ) |
| { |
| __emov(b,c); |
| return; |
| } |
| /* Zero times infinity is a NaN. */ |
| if( (__eisinf(a) && __eiiszero(b)) |
| || (__eisinf(b) && __eiiszero(a)) ) |
| { |
| mtherr( "emul", DOMAIN ); |
| __enan_NBITS( c ); |
| return; |
| } |
| #endif |
| /* Infinity times anything else is infinity. */ |
| #ifdef INFINITY |
| if( __eisinf(a) || __eisinf(b) ) |
| { |
| if( __eisneg(a) ^ __eisneg(b) ) |
| *(c+(NE-1)) = 0x8000; |
| else |
| *(c+(NE-1)) = 0; |
| __einfin(c); |
| return; |
| } |
| #endif |
| __emovi( a, ai ); |
| __emovi( b, bi ); |
| lta = ai[E]; |
| ltb = bi[E]; |
| if( ai[E] == 0 ) |
| { |
| for( i=1; i<NI-1; i++ ) |
| { |
| if( ai[i] != 0 ) |
| { |
| lta -= __enormlz( ai ); |
| goto mnzer1; |
| } |
| } |
| __eclear(c); |
| return; |
| } |
| mnzer1: |
| |
| if( bi[E] == 0 ) |
| { |
| for( i=1; i<NI-1; i++ ) |
| { |
| if( bi[i] != 0 ) |
| { |
| ltb -= __enormlz( bi ); |
| goto mnzer2; |
| } |
| } |
| __eclear(c); |
| return; |
| } |
| mnzer2: |
| |
| /* Multiply significands */ |
| j = __emulm( ai, bi ); |
| /* calculate exponent */ |
| lt = lta + ltb - (EXONE - 1); |
| __emdnorm( bi, j, 0, lt, 64, NBITS ); |
| /* calculate sign of product */ |
| if( ai[0] == bi[0] ) |
| bi[0] = 0; |
| else |
| bi[0] = 0xffff; |
| __emovo( bi, c ); |
| } |
| |
| |
| /* move out internal format to ieee long double */ |
| void __toe64(short unsigned int *a, short unsigned int *b) |
| { |
| register unsigned short *p, *q; |
| unsigned short i; |
| |
| #ifdef NANS |
| if( __eiisnan(a) ) |
| { |
| __enan_64( b ); |
| return; |
| } |
| #endif |
| #ifdef IBMPC |
| /* Shift Intel denormal significand down 1. */ |
| if( a[E] == 0 ) |
| __eshdn1(a); |
| #endif |
| p = a; |
| #ifdef MIEEE |
| q = b; |
| #else |
| q = b + 4; /* point to output exponent */ |
| #if 1 |
| /* NOTE: if data type is 96 bits wide, clear the last word here. */ |
| *(q+1)= 0; |
| #endif |
| #endif |
| |
| /* combine sign and exponent */ |
| i = *p++; |
| #ifdef MIEEE |
| if( i ) |
| *q++ = *p++ | 0x8000; |
| else |
| *q++ = *p++; |
| *q++ = 0; |
| #else |
| if( i ) |
| *q-- = *p++ | 0x8000; |
| else |
| *q-- = *p++; |
| #endif |
| /* skip over guard word */ |
| ++p; |
| /* move the significand */ |
| #ifdef MIEEE |
| for( i=0; i<4; i++ ) |
| *q++ = *p++; |
| #else |
| #ifdef INFINITY |
| if (__eiisinf (a)) |
| { |
| /* Intel long double infinity. */ |
| *q-- = 0x8000; |
| *q-- = 0; |
| *q-- = 0; |
| *q = 0; |
| return; |
| } |
| #endif |
| for( i=0; i<4; i++ ) |
| *q-- = *p++; |
| #endif |
| } |
| |
| |
| /* Compare two e type numbers. |
| * |
| * unsigned short a[NE], b[NE]; |
| * ecmp( a, b ); |
| * |
| * returns +1 if a > b |
| * 0 if a == b |
| * -1 if a < b |
| * -2 if either a or b is a NaN. |
| */ |
| int __ecmp(const short unsigned int * __restrict__ a, |
| const short unsigned int * __restrict__ b) |
| { |
| unsigned short ai[NI], bi[NI]; |
| register unsigned short *p, *q; |
| register int i; |
| int msign; |
| |
| #ifdef NANS |
| if (__eisnan (a) || __eisnan (b)) |
| return( -2 ); |
| #endif |
| __emovi( a, ai ); |
| p = ai; |
| __emovi( b, bi ); |
| q = bi; |
| |
| if( *p != *q ) |
| { /* the signs are different */ |
| /* -0 equals + 0 */ |
| for( i=1; i<NI-1; i++ ) |
| { |
| if( ai[i] != 0 ) |
| goto nzro; |
| if( bi[i] != 0 ) |
| goto nzro; |
| } |
| return(0); |
| nzro: |
| if( *p == 0 ) |
| return( 1 ); |
| else |
| return( -1 ); |
| } |
| /* both are the same sign */ |
| if( *p == 0 ) |
| msign = 1; |
| else |
| msign = -1; |
| i = NI-1; |
| do |
| { |
| if( *p++ != *q++ ) |
| { |
| goto diff; |
| } |
| } |
| while( --i > 0 ); |
| |
| return(0); /* equality */ |
| |
| |
| |
| diff: |
| |
| if( *(--p) > *(--q) ) |
| return( msign ); /* p is bigger */ |
| else |
| return( -msign ); /* p is littler */ |
| } |
| |
| /* |
| ; Shift significand |
| ; |
| ; Shifts significand area up or down by the number of bits |
| ; given by the variable sc. |
| */ |
| int __eshift(short unsigned int *x, int sc) |
| { |
| unsigned short lost; |
| unsigned short *p; |
| |
| if( sc == 0 ) |
| return( 0 ); |
| |
| lost = 0; |
| p = x + NI-1; |
| |
| if( sc < 0 ) |
| { |
| sc = -sc; |
| while( sc >= 16 ) |
| { |
| lost |= *p; /* remember lost bits */ |
| __eshdn6(x); |
| sc -= 16; |
| } |
| |
| while( sc >= 8 ) |
| { |
| lost |= *p & 0xff; |
| __eshdn8(x); |
| sc -= 8; |
| } |
| |
| while( sc > 0 ) |
| { |
| lost |= *p & 1; |
| __eshdn1(x); |
| sc -= 1; |
| } |
| } |
| else |
| { |
| while( sc >= 16 ) |
| { |
| __eshup6(x); |
| sc -= 16; |
| } |
| |
| while( sc >= 8 ) |
| { |
| __eshup8(x); |
| sc -= 8; |
| } |
| |
| while( sc > 0 ) |
| { |
| __eshup1(x); |
| sc -= 1; |
| } |
| } |
| if( lost ) |
| lost = 1; |
| return( (int )lost ); |
| } |
| |
| |
| |
| /* |
| ; normalize |
| ; |
| ; Shift normalizes the significand area pointed to by argument |
| ; shift count (up = positive) is returned. |
| */ |
| int __enormlz(short unsigned int *x) |
| { |
| register unsigned short *p; |
| int sc; |
| |
| sc = 0; |
| p = &x[M]; |
| if( *p != 0 ) |
| goto normdn; |
| ++p; |
| if( *p & 0x8000 ) |
| return( 0 ); /* already normalized */ |
| while( *p == 0 ) |
| { |
| __eshup6(x); |
| sc += 16; |
| /* With guard word, there are NBITS+16 bits available. |
| * return true if all are zero. |
| */ |
| if( sc > NBITS ) |
| return( sc ); |
| } |
| /* see if high byte is zero */ |
| while( (*p & 0xff00) == 0 ) |
| { |
| __eshup8(x); |
| sc += 8; |
| } |
| /* now shift 1 bit at a time */ |
| while( (*p & 0x8000) == 0) |
| { |
| __eshup1(x); |
| sc += 1; |
| if( sc > (NBITS+16) ) |
| { |
| mtherr( "enormlz", UNDERFLOW ); |
| return( sc ); |
| } |
| } |
| return( sc ); |
| |
| /* Normalize by shifting down out of the high guard word |
| of the significand */ |
| normdn: |
| |
| if( *p & 0xff00 ) |
| { |
| __eshdn8(x); |
| sc -= 8; |
| } |
| while( *p != 0 ) |
| { |
| __eshdn1(x); |
| sc -= 1; |
| |
| if( sc < -NBITS ) |
| { |
| mtherr( "enormlz", OVERFLOW ); |
| return( sc ); |
| } |
| } |
| return( sc ); |
| } |
| |
| |
| /* Move internal format number out, |
| * converting it to external format. |
| */ |
| void __emovo(const short unsigned int * __restrict__ a, |
| short unsigned int * __restrict__ b) |
| { |
| register const unsigned short *p; |
| register unsigned short *q; |
| unsigned short i; |
| |
| p = a; |
| q = b + (NE-1); /* point to output exponent */ |
| /* combine sign and exponent */ |
| i = *p++; |
| if( i ) |
| *q-- = *p++ | 0x8000; |
| else |
| *q-- = *p++; |
| #ifdef INFINITY |
| if( *(p-1) == 0x7fff ) |
| { |
| #ifdef NANS |
| if( __eiisnan(a) ) |
| { |
| __enan_NBITS( b ); |
| return; |
| } |
| #endif |
| __einfin(b); |
| return; |
| } |
| #endif |
| /* skip over guard word */ |
| ++p; |
| /* move the significand */ |
| for( i=0; i<NE-1; i++ ) |
| *q-- = *p++; |
| } |
| |
| |
| #if USE_LDTOA |
| |
| |
| void __eiremain(short unsigned int *den, short unsigned int *num, |
| short unsigned int *equot ) |
| { |
| long ld, ln; |
| unsigned short j; |
| |
| ld = den[E]; |
| ld -= __enormlz( den ); |
| ln = num[E]; |
| ln -= __enormlz( num ); |
| __ecleaz( equot ); |
| while( ln >= ld ) |
| { |
| if( __ecmpm(den,num) <= 0 ) |
| { |
| __esubm(den, num); |
| j = 1; |
| } |
| else |
| { |
| j = 0; |
| } |
| __eshup1(equot); |
| equot[NI-1] |= j; |
| __eshup1(num); |
| ln -= 1; |
| } |
| __emdnorm( num, 0, 0, ln, 0, NBITS ); |
| } |
| |
| |
| void __eadd1(const short unsigned int * __restrict__ a, |
| const short unsigned int * __restrict__ b, |
| short unsigned int * __restrict__ c, |
| int subflg) |
| { |
| unsigned short ai[NI], bi[NI], ci[NI]; |
| int i, lost, j, k; |
| long lt, lta, ltb; |
| |
| #ifdef INFINITY |
| if( __eisinf(a) ) |
| { |
| __emov(a,c); |
| if( subflg ) |
| __eneg(c); |
| return; |
| } |
| if( __eisinf(b) ) |
| { |
| __emov(b,c); |
| return; |
| } |
| #endif |
| __emovi( a, ai ); |
| __emovi( b, bi ); |
| if( sub ) |
| ai[0] = ~ai[0]; |
| |
| /* compare exponents */ |
| lta = ai[E]; |
| ltb = bi[E]; |
| lt = lta - ltb; |
| if( lt > 0L ) |
| { /* put the larger number in bi */ |
| __emovz( bi, ci ); |
| __emovz( ai, bi ); |
| __emovz( ci, ai ); |
| ltb = bi[E]; |
| lt = -lt; |
| } |
| lost = 0; |
| if( lt != 0L ) |
| { |
| if( lt < (long )(-NBITS-1) ) |
| goto done; /* answer same as larger addend */ |
| k = (int )lt; |
| lost = __eshift( ai, k ); /* shift the smaller number down */ |
| } |
| else |
| { |
| /* exponents were the same, so must compare significands */ |
| i = __ecmpm( ai, bi ); |
| if( i == 0 ) |
| { /* the numbers are identical in magnitude */ |
| /* if different signs, result is zero */ |
| if( ai[0] != bi[0] ) |
| { |
| __eclear(c); |
| return; |
| } |
| /* if same sign, result is double */ |
| /* double denomalized tiny number */ |
| if( (bi[E] == 0) && ((bi[3] & 0x8000) == 0) ) |
| { |
| __eshup1( bi ); |
| goto done; |
| } |
| /* add 1 to exponent unless both are zero! */ |
| for( j=1; j<NI-1; j++ ) |
| { |
| if( bi[j] != 0 ) |
| { |
| /* This could overflow, but let emovo take care of that. */ |
| ltb += 1; |
| break; |
| } |
| } |
| bi[E] = (unsigned short )ltb; |
| goto done; |
| } |
| if( i > 0 ) |
| { /* put the larger number in bi */ |
| __emovz( bi, ci ); |
| __emovz( ai, bi ); |
| __emovz( ci, ai ); |
| } |
| } |
| if( ai[0] == bi[0] ) |
| { |
| __eaddm( ai, bi ); |
| subflg = 0; |
| } |
| else |
| { |
| __esubm( ai, bi ); |
| subflg = 1; |
| } |
| __emdnorm( bi, lost, subflg, ltb, 64, NBITS); |
| |
| done: |
| __emovo( bi, c ); |
| } |
| |
| |
| /* y = largest integer not greater than x |
| * (truncated toward minus infinity) |
| * |
| * unsigned short x[NE], y[NE] |
| * |
| * efloor( x, y ); |
| */ |
| |
| |
| void __efloor(short unsigned int *x, short unsigned int *y) |
| { |
| register unsigned short *p; |
| int e, expon, i; |
| unsigned short f[NE]; |
| const unsigned short bmask[] = { |
| 0xffff, |
| 0xfffe, |
| 0xfffc, |
| 0xfff8, |
| 0xfff0, |
| 0xffe0, |
| 0xffc0, |
| 0xff80, |
| 0xff00, |
| 0xfe00, |
| 0xfc00, |
| 0xf800, |
| 0xf000, |
| 0xe000, |
| 0xc000, |
| 0x8000, |
| 0x0000, |
| }; |
| |
| __emov( x, f ); /* leave in external format */ |
| expon = (int )f[NE-1]; |
| e = (expon & 0x7fff) - (EXONE - 1); |
| if( e <= 0 ) |
| { |
| __eclear(y); |
| goto isitneg; |
| } |
| /* number of bits to clear out */ |
| e = NBITS - e; |
| __emov( f, y ); |
| if( e <= 0 ) |
| return; |
| |
| p = &y[0]; |
| while( e >= 16 ) |
| { |
| *p++ = 0; |
| e -= 16; |
| } |
| /* clear the remaining bits */ |
| *p &= bmask[e]; |
| /* truncate negatives toward minus infinity */ |
| isitneg: |
| |
| if( (unsigned short )expon & (unsigned short )0x8000 ) |
| { |
| for( i=0; i<NE-1; i++ ) |
| { |
| if( f[i] != y[i] ) |
| { |
| __esub( __eone, y, y ); |
| break; |
| } |
| } |
| } |
| } |
| |
| /* |
| ; Subtract external format numbers. |
| ; |
| ; unsigned short a[NE], b[NE], c[NE]; |
| ; esub( a, b, c ); c = b - a |
| */ |
| |
| |
| void __esub(const short unsigned int * a, |
| const short unsigned int * b, |
| short unsigned int * c) |
| { |
| |
| #ifdef NANS |
| if( __eisnan(a) ) |
| { |
| __emov (a, c); |
| return; |
| } |
| if( __eisnan(b) ) |
| { |
| __emov(b,c); |
| return; |
| } |
| /* Infinity minus infinity is a NaN. |
| * Test for subtracting infinities of the same sign. |
| */ |
| if( __eisinf(a) && __eisinf(b) && ((__eisneg (a) ^ __eisneg (b)) == 0)) |
| { |
| mtherr( "esub", DOMAIN ); |
| __enan_NBITS( c ); |
| return; |
| } |
| #endif |
| __eadd1( a, b, c, 1 ); |
| } |
| |
| |
| |
| /* |
| ; Divide. |
| ; |
| ; unsigned short a[NI], b[NI], c[NI]; |
| ; ediv( a, b, c ); c = b / a |
| */ |
| |
| void __ediv(const short unsigned int *a, |
| const short unsigned int *b, |
| short unsigned int *c) |
| { |
| unsigned short ai[NI], bi[NI]; |
| int i; |
| long lt, lta, ltb; |
| |
| #ifdef NANS |
| /* Return any NaN input. */ |
| if( __eisnan(a) ) |
| { |
| __emov(a,c); |
| return; |
| } |
| if( __eisnan(b) ) |
| { |
| __emov(b,c); |
| return; |
| } |
| /* Zero over zero, or infinity over infinity, is a NaN. */ |
| if( (__eiszero(a) && __eiszero(b)) |
| || (__eisinf (a) && __eisinf (b)) ) |
| { |
| mtherr( "ediv", DOMAIN ); |
| __enan_NBITS( c ); |
| return; |
| } |
| #endif |
| /* Infinity over anything else is infinity. */ |
| #ifdef INFINITY |
| if( __eisinf(b) ) |
| { |
| if( __eisneg(a) ^ __eisneg(b) ) |
| *(c+(NE-1)) = 0x8000; |
| else |
| *(c+(NE-1)) = 0; |
| __einfin(c); |
| return; |
| } |
| if( __eisinf(a) ) |
| { |
| __eclear(c); |
| return; |
| } |
| #endif |
| __emovi( a, ai ); |
| __emovi( b, bi ); |
| lta = ai[E]; |
| ltb = bi[E]; |
| if( bi[E] == 0 ) |
| { /* See if numerator is zero. */ |
| for( i=1; i<NI-1; i++ ) |
| { |
| if( bi[i] != 0 ) |
| { |
| ltb -= __enormlz( bi ); |
| goto dnzro1; |
| } |
| } |
| __eclear(c); |
| return; |
| } |
| dnzro1: |
| |
| if( ai[E] == 0 ) |
| { /* possible divide by zero */ |
| for( i=1; i<NI-1; i++ ) |
| { |
| if( ai[i] != 0 ) |
| { |
| lta -= __enormlz( ai ); |
| goto dnzro2; |
| } |
| } |
| if( ai[0] == bi[0] ) |
| *(c+(NE-1)) = 0; |
| else |
| *(c+(NE-1)) = 0x8000; |
| __einfin(c); |
| mtherr( "ediv", SING ); |
| return; |
| } |
| dnzro2: |
| |
| i = __edivm( ai, bi ); |
| /* calculate exponent */ |
| lt = ltb - lta + EXONE; |
| __emdnorm( bi, i, 0, lt, 64, NBITS ); |
| /* set the sign */ |
| if( ai[0] == bi[0] ) |
| bi[0] = 0; |
| else |
| bi[0] = 0Xffff; |
| __emovo( bi, c ); |
| } |
| |
| void __e64toe(short unsigned int *pe, short unsigned int *y) |
| { |
| unsigned short yy[NI]; |
| unsigned short *p, *q, *e; |
| int i; |
| |
| e = pe; |
| p = yy; |
| for( i=0; i<NE-5; i++ ) |
| *p++ = 0; |
| #ifdef IBMPC |
| for( i=0; i<5; i++ ) |
| *p++ = *e++; |
| #endif |
| #ifdef DEC |
| for( i=0; i<5; i++ ) |
| *p++ = *e++; |
| #endif |
| #ifdef MIEEE |
| p = &yy[0] + (NE-1); |
| *p-- = *e++; |
| ++e; |
| for( i=0; i<4; i++ ) |
| *p-- = *e++; |
| #endif |
| |
| #ifdef IBMPC |
| /* For Intel long double, shift denormal significand up 1 |
| -- but only if the top significand bit is zero. */ |
| if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0) |
| { |
| unsigned short temp[NI+1]; |
| __emovi(yy, temp); |
| __eshup1(temp); |
| __emovo(temp,y); |
| return; |
| } |
| #endif |
| #ifdef INFINITY |
| /* Point to the exponent field. */ |
| p = &yy[NE-1]; |
| if( *p == 0x7fff ) |
| { |
| #ifdef NANS |
| #ifdef IBMPC |
| for( i=0; i<4; i++ ) |
| { |
| if((i != 3 && pe[i] != 0) |
| /* Check for Intel long double infinity pattern. */ |
| || (i == 3 && pe[i] != 0x8000)) |
| { |
| __enan_NBITS( y ); |
| return; |
| } |
| } |
| #else |
| for( i=1; i<=4; i++ ) |
| { |
| if( pe[i] != 0 ) |
| { |
| __enan_NBITS( y ); |
| return; |
| } |
| } |
| #endif |
| #endif /* NANS */ |
| __eclear( y ); |
| __einfin( y ); |
| if( *p & 0x8000 ) |
| __eneg(y); |
| return; |
| } |
| #endif |
| p = yy; |
| q = y; |
| for( i=0; i<NE; i++ ) |
| *q++ = *p++; |
| } |
| |
| #endif /* USE_LDTOA */ |